[Model] Add tinypose single && pipeline model (#177)

* Add tinypose model

* Add PPTinypose python API

* Fix picodet preprocess bug && Add Tinypose examples

* Update tinypose example code

* Update ppseg preprocess if condition

* Update ppseg backend support type

* Update permute.h

* Update README.md

* Update code with comments

* Move files dir

* Delete premute.cc

* Add single model pptinypose

* Delete pptinypose old code in ppdet

* Code format

* Add ppdet + pptinypose pipeline model

* Fix bug for posedetpipeline

* Change Frontend to ModelFormat

* Change Frontend to ModelFormat in __init__.py

* Add python posedetpipeline/

* Update pptinypose example dir name

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create keypointdetection_result.md

* Create README.md

* Create README.md

* Create README.md

* Update README.md

* Update README.md

* Create README.md

* Fix det_keypoint_unite_infer.py bug

* Create README.md

* Update PP-Tinypose by comment

* Update by comment

* Add pipeline directory

* Add pptinypose dir

* Update pptinypose to align accuracy

* Addd warpAffine processor

* Update GetCpuMat to  GetOpenCVMat

* Add comment for pptinypose && pipline

* Update docs/main_page.md

* Add README.md for pptinypose

* Add README for det_keypoint_unite

* Remove ENABLE_PIPELINE option

* Remove ENABLE_PIPELINE option

* Change pptinypose default backend

* PP-TinyPose Pipeline support multi PP-Detection models

* Update pp-tinypose comment

* Update by comments

* Add single test example

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-10-21 09:28:23 +08:00
committed by GitHub
parent 49ab773d22
commit b565c15bf7
62 changed files with 2583 additions and 20 deletions

View File

@@ -0,0 +1,79 @@
# PP-TinyPose Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`pptinypose_infer.py`快速完成PP-TinyPose在CPU/GPU以及GPU上通过TensorRT加速部署的`单图单人关键点检测`示例。执行如下脚本即可完成
>> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../det_keypoint_unite/python/README.md)
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/keypointdetection/tiny_pose/python
# 下载PP-TinyPose模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
# CPU推理
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device cpu
# GPU推理
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
</div>
## PP-TinyPose Python接口
```python
fd.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PP-TinyPose模型加载和初始化其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/EXPORT_MODEL.md)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### predict函数
> ```python
> PPTinyPose.predict(input_image)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.KeyPointDetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 后处理参数
用户可按照自己的实际需求,修改下列后处理参数,从而影响最终的推理和部署效果
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
## 其它文档
- [PP-TinyPose 模型介绍](..)
- [PP-TinyPose C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)

View File

@@ -0,0 +1,62 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--tinypose_model_dir",
required=True,
help="path of paddletinypose model directory")
parser.add_argument(
"--image", required=True, help="path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="wether to use tensorrt.")
return parser.parse_args()
def build_tinypose_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("image", [1, 3, 256, 192])
return option
args = parse_arguments()
tinypose_model_file = os.path.join(args.tinypose_model_dir, "model.pdmodel")
tinypose_params_file = os.path.join(args.tinypose_model_dir, "model.pdiparams")
tinypose_config_file = os.path.join(args.tinypose_model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_tinypose_option(args)
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
tinypose_model_file,
tinypose_params_file,
tinypose_config_file,
runtime_option=runtime_option)
# 预测图片检测结果
im = cv2.imread(args.image)
tinypose_result = tinypose_model.predict(im)
print("Paddle TinyPose Result:\n", tinypose_result)
# 预测结果可视化
vis_im = fd.vision.vis_keypoint_detection(
im, tinypose_result, conf_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("TinyPose visualized result save in ./visualized_result.jpg")