mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 20:11:20 +08:00
[Model] Add tinypose single && pipeline model (#177)
* Add tinypose model * Add PPTinypose python API * Fix picodet preprocess bug && Add Tinypose examples * Update tinypose example code * Update ppseg preprocess if condition * Update ppseg backend support type * Update permute.h * Update README.md * Update code with comments * Move files dir * Delete premute.cc * Add single model pptinypose * Delete pptinypose old code in ppdet * Code format * Add ppdet + pptinypose pipeline model * Fix bug for posedetpipeline * Change Frontend to ModelFormat * Change Frontend to ModelFormat in __init__.py * Add python posedetpipeline/ * Update pptinypose example dir name * Update README.md * Update README.md * Update README.md * Update README.md * Create keypointdetection_result.md * Create README.md * Create README.md * Create README.md * Update README.md * Update README.md * Create README.md * Fix det_keypoint_unite_infer.py bug * Create README.md * Update PP-Tinypose by comment * Update by comment * Add pipeline directory * Add pptinypose dir * Update pptinypose to align accuracy * Addd warpAffine processor * Update GetCpuMat to GetOpenCVMat * Add comment for pptinypose && pipline * Update docs/main_page.md * Add README.md for pptinypose * Add README for det_keypoint_unite * Remove ENABLE_PIPELINE option * Remove ENABLE_PIPELINE option * Change pptinypose default backend * PP-TinyPose Pipeline support multi PP-Detection models * Update pp-tinypose comment * Update by comments * Add single test example Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -0,0 +1,74 @@
|
||||
# PP-PicoDet + PP-TinyPose (Pipeline) Python部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本目录下提供`det_keypoint_unite_infer.py`快速完成多人模型配置 PP-PicoDet + PP-TinyPose 在CPU/GPU,以及GPU上通过TensorRT加速部署的`单图多人关键点检测`示例。执行如下脚本即可完成
|
||||
>> **注意**: PP-TinyPose单模型独立部署,请参考[PP-TinyPose 单模型](../../tiny_pose//python/README.md)
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/keypointdetection/det_keypoint_unite/python
|
||||
|
||||
# 下载PP-TinyPose模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
|
||||
tar -xvf PP_TinyPose_256x192_infer.tgz
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
|
||||
tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg
|
||||
# CPU推理
|
||||
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device cpu
|
||||
# GPU推理
|
||||
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device gpu
|
||||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device gpu --use_trt True
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/16222477/196393343-eeb6b68f-0bc6-4927-871f-5ac610da7293.jpeg", width=640px, height=427px />
|
||||
</div>
|
||||
|
||||
## PPTinyPosePipeline Python接口
|
||||
|
||||
```python
|
||||
fd.pipeline.PPTinyPose(det_model=None, pptinypose_model=None)
|
||||
```
|
||||
|
||||
PPTinyPosePipeline模型加载和初始化,其中det_model是使用`fd.vision.detection.PicoDet`[参考Detection文档](../../../detection/paddledetection/python/)初始化的检测模型,pptinypose_model是使用`fd.vision.keypointdetection.PPTinyPose`[参考PP-TinyPose文档](../../tiny_pose/python/)初始化的检测模型
|
||||
|
||||
**参数**
|
||||
|
||||
> * **det_model**(str): 初始化后的检测模型
|
||||
> * **pptinypose_model**(str): 初始化后的PP-TinyPose模型
|
||||
|
||||
### predict函数
|
||||
|
||||
> ```python
|
||||
> PPTinyPosePipeline.predict(input_image)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.KeyPointDetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
### 类成员属性
|
||||
#### 后处理参数
|
||||
> > * **detection_model_score_threshold**(bool):
|
||||
输入PP-TinyPose模型前,Detectin模型过滤检测框的分数阈值
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [Pipeline 模型介绍](..)
|
||||
- [Pipeline C++部署](../cpp)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
|
Reference in New Issue
Block a user