[Model] Add tinypose single && pipeline model (#177)

* Add tinypose model

* Add PPTinypose python API

* Fix picodet preprocess bug && Add Tinypose examples

* Update tinypose example code

* Update ppseg preprocess if condition

* Update ppseg backend support type

* Update permute.h

* Update README.md

* Update code with comments

* Move files dir

* Delete premute.cc

* Add single model pptinypose

* Delete pptinypose old code in ppdet

* Code format

* Add ppdet + pptinypose pipeline model

* Fix bug for posedetpipeline

* Change Frontend to ModelFormat

* Change Frontend to ModelFormat in __init__.py

* Add python posedetpipeline/

* Update pptinypose example dir name

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create keypointdetection_result.md

* Create README.md

* Create README.md

* Create README.md

* Update README.md

* Update README.md

* Create README.md

* Fix det_keypoint_unite_infer.py bug

* Create README.md

* Update PP-Tinypose by comment

* Update by comment

* Add pipeline directory

* Add pptinypose dir

* Update pptinypose to align accuracy

* Addd warpAffine processor

* Update GetCpuMat to  GetOpenCVMat

* Add comment for pptinypose && pipline

* Update docs/main_page.md

* Add README.md for pptinypose

* Add README for det_keypoint_unite

* Remove ENABLE_PIPELINE option

* Remove ENABLE_PIPELINE option

* Change pptinypose default backend

* PP-TinyPose Pipeline support multi PP-Detection models

* Update pp-tinypose comment

* Update by comments

* Add single test example

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-10-21 09:28:23 +08:00
committed by GitHub
parent 49ab773d22
commit b565c15bf7
62 changed files with 2583 additions and 20 deletions

View File

@@ -0,0 +1,74 @@
# PP-PicoDet + PP-TinyPose (Pipeline) Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`det_keypoint_unite_infer.py`快速完成多人模型配置 PP-PicoDet + PP-TinyPose 在CPU/GPU以及GPU上通过TensorRT加速部署的`单图多人关键点检测`示例。执行如下脚本即可完成
>> **注意**: PP-TinyPose单模型独立部署请参考[PP-TinyPose 单模型](../../tiny_pose//python/README.md)
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/keypointdetection/det_keypoint_unite/python
# 下载PP-TinyPose模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg
# CPU推理
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device cpu
# GPU推理
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196393343-eeb6b68f-0bc6-4927-871f-5ac610da7293.jpeg", width=640px, height=427px />
</div>
## PPTinyPosePipeline Python接口
```python
fd.pipeline.PPTinyPose(det_model=None, pptinypose_model=None)
```
PPTinyPosePipeline模型加载和初始化其中det_model是使用`fd.vision.detection.PicoDet`[参考Detection文档](../../../detection/paddledetection/python/)初始化的检测模型pptinypose_model是使用`fd.vision.keypointdetection.PPTinyPose`[参考PP-TinyPose文档](../../tiny_pose/python/)初始化的检测模型
**参数**
> * **det_model**(str): 初始化后的检测模型
> * **pptinypose_model**(str): 初始化后的PP-TinyPose模型
### predict函数
> ```python
> PPTinyPosePipeline.predict(input_image)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.KeyPointDetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 后处理参数
> > * **detection_model_score_threshold**(bool):
输入PP-TinyPose模型前Detectin模型过滤检测框的分数阈值
## 其它文档
- [Pipeline 模型介绍](..)
- [Pipeline C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)

View File

@@ -0,0 +1,91 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--tinypose_model_dir",
required=True,
help="path of paddletinypose model directory")
parser.add_argument(
"--det_model_dir", help="path of paddledetection model directory")
parser.add_argument(
"--image", required=True, help="path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="wether to use tensorrt.")
return parser.parse_args()
def build_picodet_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("image", [1, 3, 320, 320])
option.set_trt_input_shape("scale_factor", [1, 2])
return option
def build_tinypose_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("image", [1, 3, 256, 192])
return option
args = parse_arguments()
picodet_model_file = os.path.join(args.det_model_dir, "model.pdmodel")
picodet_params_file = os.path.join(args.det_model_dir, "model.pdiparams")
picodet_config_file = os.path.join(args.det_model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_picodet_option(args)
det_model = fd.vision.detection.PicoDet(
picodet_model_file,
picodet_params_file,
picodet_config_file,
runtime_option=runtime_option)
tinypose_model_file = os.path.join(args.tinypose_model_dir, "model.pdmodel")
tinypose_params_file = os.path.join(args.tinypose_model_dir, "model.pdiparams")
tinypose_config_file = os.path.join(args.tinypose_model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_tinypose_option(args)
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
tinypose_model_file,
tinypose_params_file,
tinypose_config_file,
runtime_option=runtime_option)
# 预测图片检测结果
im = cv2.imread(args.image)
pipeline = fd.pipeline.PPTinyPose(det_model, tinypose_model)
pipeline.detection_model_score_threshold = 0.5
pipeline_result = pipeline.predict(im)
print("Paddle TinyPose Result:\n", pipeline_result)
# 预测结果可视化
vis_im = fd.vision.vis_keypoint_detection(
im, pipeline_result, conf_threshold=0.2)
cv2.imwrite("visualized_result.jpg", vis_im)
print("TinyPose visualized result save in ./visualized_result.jpg")