[Model] Add tinypose single && pipeline model (#177)

* Add tinypose model

* Add PPTinypose python API

* Fix picodet preprocess bug && Add Tinypose examples

* Update tinypose example code

* Update ppseg preprocess if condition

* Update ppseg backend support type

* Update permute.h

* Update README.md

* Update code with comments

* Move files dir

* Delete premute.cc

* Add single model pptinypose

* Delete pptinypose old code in ppdet

* Code format

* Add ppdet + pptinypose pipeline model

* Fix bug for posedetpipeline

* Change Frontend to ModelFormat

* Change Frontend to ModelFormat in __init__.py

* Add python posedetpipeline/

* Update pptinypose example dir name

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create keypointdetection_result.md

* Create README.md

* Create README.md

* Create README.md

* Update README.md

* Update README.md

* Create README.md

* Fix det_keypoint_unite_infer.py bug

* Create README.md

* Update PP-Tinypose by comment

* Update by comment

* Add pipeline directory

* Add pptinypose dir

* Update pptinypose to align accuracy

* Addd warpAffine processor

* Update GetCpuMat to  GetOpenCVMat

* Add comment for pptinypose && pipline

* Update docs/main_page.md

* Add README.md for pptinypose

* Add README for det_keypoint_unite

* Remove ENABLE_PIPELINE option

* Remove ENABLE_PIPELINE option

* Change pptinypose default backend

* PP-TinyPose Pipeline support multi PP-Detection models

* Update pp-tinypose comment

* Update by comments

* Add single test example

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-10-21 09:28:23 +08:00
committed by GitHub
parent 49ab773d22
commit b565c15bf7
62 changed files with 2583 additions and 20 deletions

View File

@@ -0,0 +1,14 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/det_keypoint_unite_infer.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,84 @@
# PP-PicoDet + PP-TinyPose (Pipeline) C++部署示例
本目录下提供`det_keypoint_unite_infer.cc`快速完成多人模型配置 PP-PicoDet + PP-TinyPose 在CPU/GPU以及GPU上通过TensorRT加速部署的`单图多人关键点检测`示例。执行如下脚本即可完成
>> **注意**: PP-TinyPose单模型独立部署请参考[PP-TinyPose 单模型](../../tiny_pose/cpp/README.md)
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上推理为例在本目录执行如下命令即可完成编译测试
```bash
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.3.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.3.0.tgz
cd fastdeploy-linux-x64-gpu-0.3.0/examples/vision/keypointdetection/tiny_pose/cpp/
mkdir build
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.3.0
make -j
# 下载PP-TinyPose和PP-PicoDet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg
# CPU推理
./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 0
# GPU推理
./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 1
# GPU上TensorRT推理
./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 2
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196393343-eeb6b68f-0bc6-4927-871f-5ac610da7293.jpeg", width=359px, height=423px />
</div>
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## PP-TinyPose C++接口
### PP-TinyPose类
```c++
fastdeploy::pipeline::PPTinyPose(
fastdeploy::vision::detection::PPYOLOE* det_model,
fastdeploy::vision::keypointdetection::PPTinyPose* pptinypose_model)
```
PPTinyPose Pipeline模型加载和初始化。
**参数**
> * **model_det_modelfile**(fastdeploy::vision::detection): 初始化后的检测模型,参考[PP-TinyPose](../../tiny_pose/README.md)
> * **pptinypose_model**(fastdeploy::vision::keypointdetection): 初始化后的检测模型[Detection](../../../detection/paddledetection/README.md)暂时只提供PaddleDetection系列
#### Predict函数
> ```c++
> PPTinyPose::Predict(cv::Mat* im, KeyPointDetectionResult* result)
> ```
>
> 模型预测接口,输入图像直接输出关键点检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 关键点检测结果,包括关键点的坐标以及关键点对应的概率值, KeyPointDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 后处理参数
> > * **detection_model_score_threshold**(bool):
输入PP-TinyPose模型前Detectin模型过滤检测框的分数阈值
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,196 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#include "fastdeploy/pipeline.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const std::string& det_model_dir,
const std::string& tinypose_model_dir,
const std::string& image_file) {
auto det_model_file = det_model_dir + sep + "model.pdmodel";
auto det_params_file = det_model_dir + sep + "model.pdiparams";
auto det_config_file = det_model_dir + sep + "infer_cfg.yml";
auto det_model = fastdeploy::vision::detection::PicoDet(
det_model_file, det_params_file, det_config_file);
if (!det_model.Initialized()) {
std::cerr << "Detection Model Failed to initialize." << std::endl;
return;
}
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
tinypose_model_file, tinypose_params_file, tinypose_config_file);
if (!tinypose_model.Initialized()) {
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::KeyPointDetectionResult res;
auto pipeline =fastdeploy::pipeline::PPTinyPose(&det_model, &tinypose_model);
pipeline.detection_model_score_threshold = 0.5;
if (!pipeline.Predict(&im, &res)) {
std::cerr << "TinyPose Prediction Failed." << std::endl;
return;
} else {
std::cout << "TinyPose Prediction Done!" << std::endl;
}
// 输出预测框结果
std::cout << res.Str() << std::endl;
// 可视化预测结果
auto vis_im =
fastdeploy::vision::VisKeypointDetection(im, res, 0.2);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "TinyPose visualized result saved in ./vis_result.jpg"
<< std::endl;
}
void GpuInfer(const std::string& det_model_dir,
const std::string& tinypose_model_dir,
const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto det_model_file = det_model_dir + sep + "model.pdmodel";
auto det_params_file = det_model_dir + sep + "model.pdiparams";
auto det_config_file = det_model_dir + sep + "infer_cfg.yml";
auto det_model = fastdeploy::vision::detection::PicoDet(
det_model_file, det_params_file, det_config_file, option);
if (!det_model.Initialized()) {
std::cerr << "Detection Model Failed to initialize." << std::endl;
return;
}
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
if (!tinypose_model.Initialized()) {
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::KeyPointDetectionResult res;
auto pipeline =
fastdeploy::pipeline::PPTinyPose(
&det_model, &tinypose_model);
pipeline.detection_model_score_threshold = 0.5;
if (!pipeline.Predict(&im, &res)) {
std::cerr << "TinyPose Prediction Failed." << std::endl;
return;
} else {
std::cout << "TinyPose Prediction Done!" << std::endl;
}
// 输出预测框结果
std::cout << res.Str() << std::endl;
// 可视化预测结果
auto vis_im =
fastdeploy::vision::VisKeypointDetection(im, res, 0.2);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "TinyPose visualized result saved in ./vis_result.jpg"
<< std::endl;
}
void TrtInfer(const std::string& det_model_dir,
const std::string& tinypose_model_dir,
const std::string& image_file) {
auto det_model_file = det_model_dir + sep + "model.pdmodel";
auto det_params_file = det_model_dir + sep + "model.pdiparams";
auto det_config_file = det_model_dir + sep + "infer_cfg.yml";
auto det_option = fastdeploy::RuntimeOption();
det_option.UseGpu();
det_option.UseTrtBackend();
det_option.SetTrtInputShape("image", {1, 3, 320, 320});
det_option.SetTrtInputShape("scale_factor", {1, 2});
auto det_model = fastdeploy::vision::detection::PicoDet(
det_model_file, det_params_file, det_config_file, det_option);
if (!det_model.Initialized()) {
std::cerr << "Detection Model Failed to initialize." << std::endl;
return;
}
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
auto tinypose_option = fastdeploy::RuntimeOption();
tinypose_option.UseGpu();
tinypose_option.UseTrtBackend();
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
tinypose_model_file, tinypose_params_file, tinypose_config_file,
tinypose_option);
if (!tinypose_model.Initialized()) {
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::KeyPointDetectionResult res;
auto pipeline =
fastdeploy::pipeline::PPTinyPose(
&det_model, &tinypose_model);
pipeline.detection_model_score_threshold = 0.5;
if (!pipeline.Predict(&im, &res)) {
std::cerr << "TinyPose Prediction Failed." << std::endl;
return;
} else {
std::cout << "TinyPose Prediction Done!" << std::endl;
}
// 输出预测关键点结果
std::cout << res.Str() << std::endl;
// 可视化预测结果
auto vis_im =
fastdeploy::vision::VisKeypointDetection(im, res, 0.2);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "TinyPose visualized result saved in ./vis_result.jpg"
<< std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 5) {
std::cout << "Usage: infer_demo path/to/detection_model_dir "
"path/to/pptinypose_model_dir path/to/image run_option, "
"e.g ./infer_model ./picodet_model_dir ./pptinypose_model_dir "
"./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[4]) == 0) {
CpuInfer(argv[1], argv[2], argv[3]);
} else if (std::atoi(argv[4]) == 1) {
GpuInfer(argv[1], argv[2], argv[3]);
} else if (std::atoi(argv[4]) == 2) {
TrtInfer(argv[1], argv[2], argv[3]);
}
return 0;
}