mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-28 10:51:39 +08:00
[Model] Add tinypose single && pipeline model (#177)
* Add tinypose model * Add PPTinypose python API * Fix picodet preprocess bug && Add Tinypose examples * Update tinypose example code * Update ppseg preprocess if condition * Update ppseg backend support type * Update permute.h * Update README.md * Update code with comments * Move files dir * Delete premute.cc * Add single model pptinypose * Delete pptinypose old code in ppdet * Code format * Add ppdet + pptinypose pipeline model * Fix bug for posedetpipeline * Change Frontend to ModelFormat * Change Frontend to ModelFormat in __init__.py * Add python posedetpipeline/ * Update pptinypose example dir name * Update README.md * Update README.md * Update README.md * Update README.md * Create keypointdetection_result.md * Create README.md * Create README.md * Create README.md * Update README.md * Update README.md * Create README.md * Fix det_keypoint_unite_infer.py bug * Create README.md * Update PP-Tinypose by comment * Update by comment * Add pipeline directory * Add pptinypose dir * Update pptinypose to align accuracy * Addd warpAffine processor * Update GetCpuMat to GetOpenCVMat * Add comment for pptinypose && pipline * Update docs/main_page.md * Add README.md for pptinypose * Add README for det_keypoint_unite * Remove ENABLE_PIPELINE option * Remove ENABLE_PIPELINE option * Change pptinypose default backend * PP-TinyPose Pipeline support multi PP-Detection models * Update pp-tinypose comment * Update by comments * Add single test example Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -6,8 +6,9 @@ FastDeploy根据视觉模型的任务类型,定义了不同的结构体(`fastd
|
||||
| :----- | :--- | :---- | :------- |
|
||||
| ClassifyResult | [C++/Python文档](./classification_result.md) | 图像分类返回结果 | ResNet50、MobileNetV3等 |
|
||||
| SegmentationResult | [C++/Python文档](./segmentation_result.md) | 图像分割返回结果 | PP-HumanSeg、PP-LiteSeg等 |
|
||||
| DetectionResult | [C++/Python文档](./detection_result.md) | 目标检测返回结果 | PPYOLOE、YOLOv7系列模型等 |
|
||||
| DetectionResult | [C++/Python文档](./detection_result.md) | 目标检测返回结果 | PP-YOLOE、YOLOv7系列模型等 |
|
||||
| FaceDetectionResult | [C++/Python文档](./face_detection_result.md) | 目标检测返回结果 | SCRFD、RetinaFace系列模型等 |
|
||||
| KeyPointDetectionResult | [C++/Python文档](./keypointdetection_result.md) | 关键点检测返回结果 | PP-Tinypose系列模型等 |
|
||||
| FaceRecognitionResult | [C++/Python文档](./face_recognition_result.md) | 目标检测返回结果 | ArcFace、CosFace系列模型等 |
|
||||
| MattingResult | [C++/Python文档](./matting_result.md) | 目标检测返回结果 | MODNet系列模型等 |
|
||||
| OCRResult | [C++/Python文档](./ocr_result.md) | 文本框检测,分类和文本识别返回结果 | OCR系列模型等 |
|
||||
|
||||
45
docs/api/vision_results/keypointdetection_result.md
Normal file
45
docs/api/vision_results/keypointdetection_result.md
Normal file
@@ -0,0 +1,45 @@
|
||||
# KeyPointDetectionResult 目标检测结果
|
||||
|
||||
KeyPointDetectionResult 代码定义在`fastdeploy/vision/common/result.h`中,用于表明图像中目标行为的各个关键点坐标和置信度。
|
||||
|
||||
## C++ 定义
|
||||
|
||||
`fastdeploy::vision::KeyPointDetectionResult`
|
||||
|
||||
```c++
|
||||
struct KeyPointDetectionResult {
|
||||
std::vector<std::array<float, 2>> keypoints;
|
||||
std::vector<float> scores;
|
||||
int num_joints = -1;
|
||||
void Clear();
|
||||
std::string Str();
|
||||
};
|
||||
```
|
||||
|
||||
- **keypoints**: 成员变量,表示识别到的目标行为的关键点坐标。`keypoints.size()= N * J * 2`,
|
||||
- `N`:图片中的目标数量
|
||||
- `J`:num_joints(一个目标的关键点数量)
|
||||
- `3`:坐标信息[x, y]
|
||||
- **scores**: 成员变量,表示识别到的目标行为的关键点坐标的置信度。`scores.size()= N * J`
|
||||
- `N`:图片中的目标数量
|
||||
- `J`:num_joints(一个目标的关键点数量)
|
||||
- **num_joints**: 成员变量,一个目标的关键点数量
|
||||
|
||||
- **num_joints**: 成员变量,一个目标的关键点数量
|
||||
- **Clear()**: 成员函数,用于清除结构体中存储的结果
|
||||
- **Str()**: 成员函数,将结构体中的信息以字符串形式输出(用于Debug)
|
||||
|
||||
## Python 定义
|
||||
|
||||
`fastdeploy.vision.KeyPointDetectionResult`
|
||||
|
||||
- **keypoints**(list of list(float)): 成员变量,表示识别到的目标行为的关键点坐标。
|
||||
`keypoints.size()= N * J * 2`
|
||||
`N`:图片中的目标数量
|
||||
`J`:num_joints(关键点数量)
|
||||
`3`:坐标信息[x, y, conf]
|
||||
- **scores**(list of float): 成员变量,表示识别到的目标行为的关键点坐标的置信度。
|
||||
`scores.size()= N * J`
|
||||
`N`:图片中的目标数量
|
||||
`J`:num_joints(一个目标的关键点数量)
|
||||
- **num_joints**(int): 成员变量,一个目标的关键点数量
|
||||
Reference in New Issue
Block a user