mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[V1 Loader] Ernie kv cache quant support v1 loader (#3899)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
* support c8 for ernie * add unittest * support vl * fix c8
This commit is contained in:
@@ -34,6 +34,7 @@ import os
|
||||
from safetensors import safe_open
|
||||
|
||||
from fastdeploy.model_executor.layers.utils import get_tensor
|
||||
from fastdeploy.model_executor.utils import default_weight_loader
|
||||
|
||||
|
||||
class Attention(nn.Layer):
|
||||
@@ -77,6 +78,7 @@ class Attention(nn.Layer):
|
||||
ValueError: If the `v_head_dim` is less than 0.
|
||||
"""
|
||||
super().__init__()
|
||||
self.fd_config = fd_config
|
||||
self.num_heads: int = (
|
||||
fd_config.model_config.num_attention_heads // fd_config.parallel_config.tensor_parallel_size
|
||||
)
|
||||
@@ -101,23 +103,21 @@ class Attention(nn.Layer):
|
||||
self.use_neox_rotary_style: bool = use_neox_rotary_style
|
||||
|
||||
if fd_config.quant_config and hasattr(fd_config.quant_config, "kv_cache_quant_type"):
|
||||
self.kvcache_quant_method: QuantMethodBase = fd_config.quant_config.get_quant_method(self)
|
||||
self.quant_method: QuantMethodBase = fd_config.quant_config.get_quant_method(self)
|
||||
else:
|
||||
self.kvcache_quant_method = None
|
||||
self.quant_method = None
|
||||
|
||||
if self.kvcache_quant_method is None:
|
||||
if self.quant_method is None:
|
||||
logger.info(f"Attention is running in cache kv {self._dtype} mode")
|
||||
else:
|
||||
logger.info(
|
||||
f"Attention is running in cache kv {self.kvcache_quant_method.cache_quant_config.quant_type} mode"
|
||||
)
|
||||
logger.info(f"Attention is running in cache kv {self.quant_method.cache_quant_config.quant_type} mode")
|
||||
self.use_qk_norm = use_qk_norm
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
if self.use_qk_norm:
|
||||
self.q_norm_key = f"{self.prefix}.q_norm"
|
||||
self.k_norm_key = f"{self.prefix}.k_norm"
|
||||
self.init_weight()
|
||||
|
||||
self.init_weight()
|
||||
if (
|
||||
fd_config.moba_attention_config is not None
|
||||
and fd_config.moba_attention_config.moba_encoder_top_k_left is not None
|
||||
@@ -161,6 +161,15 @@ class Attention(nn.Layer):
|
||||
)
|
||||
|
||||
def init_weight(self):
|
||||
if self.quant_method is not None:
|
||||
self.quant_method.create_weights(
|
||||
self,
|
||||
weight_loader=(
|
||||
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
|
||||
),
|
||||
)
|
||||
|
||||
if self.use_qk_norm:
|
||||
self.q_norm_weight = self.create_parameter(
|
||||
shape=[self.qk_head_dim],
|
||||
dtype="float32",
|
||||
@@ -179,14 +188,23 @@ class Attention(nn.Layer):
|
||||
"""
|
||||
Attention only have quant related scales not other parameters.
|
||||
"""
|
||||
if self.kvcache_quant_method is not None:
|
||||
self.kvcache_quant_method.create_weights(self, state_dict)
|
||||
if self.quant_method is not None:
|
||||
self.quant_method.process_loaded_weights(self, state_dict)
|
||||
if self.use_qk_norm:
|
||||
q_norm_weight_tensor = paddle.to_tensor(get_tensor(state_dict.pop(self.q_norm_key + ".weight")))
|
||||
k_norm_weight_tensor = paddle.to_tensor(get_tensor(state_dict.pop(self.k_norm_key + ".weight")))
|
||||
self.q_norm_weight.set_value(q_norm_weight_tensor.astype("float32"))
|
||||
self.k_norm_weight.set_value(k_norm_weight_tensor.astype("float32"))
|
||||
|
||||
def weight_loader(self, param, loaded_weight, loaded_shard_id: Optional[str] = None):
|
||||
loaded_weight = get_tensor(loaded_weight).cast(paddle.get_default_dtype())
|
||||
if self.quant_method.cache_quant_config.has_zero_point: # cache_int4_zp
|
||||
loaded_weight = 1.0 / loaded_weight
|
||||
else:
|
||||
loaded_weight = self.quant_method.cache_quant_config.max_bound / loaded_weight
|
||||
|
||||
param.copy_(loaded_weight, False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
q: paddle.Tensor = None,
|
||||
|
@@ -21,8 +21,8 @@ import paddle
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy.model_executor.layers.utils import get_tensor
|
||||
from fastdeploy.model_executor.utils import set_weight_attrs
|
||||
|
||||
from ..utils import create_and_set_parameter
|
||||
from .quant_base import QuantConfigBase, QuantMethodBase
|
||||
|
||||
|
||||
@@ -117,9 +117,8 @@ class KVCacheMethodBase(QuantMethodBase):
|
||||
"""
|
||||
cache_k_zeropoint = get_tensor(state_dict.pop(self.cache_k_zp_name)).cast(paddle.get_default_dtype())
|
||||
cache_v_zeropoint = get_tensor(state_dict.pop(self.cache_v_zp_name)).cast(paddle.get_default_dtype())
|
||||
|
||||
create_and_set_parameter(layer, "cache_k_zp", cache_k_zeropoint)
|
||||
create_and_set_parameter(layer, "cache_v_zp", cache_v_zeropoint)
|
||||
layer.cache_k_zp.set_value(cache_k_zeropoint)
|
||||
layer.cache_v_zp.set_value(cache_v_zeropoint)
|
||||
|
||||
def load_scale(self, layer: nn.Layer, state_dict):
|
||||
"""
|
||||
@@ -156,21 +155,15 @@ class KVCacheMethodBase(QuantMethodBase):
|
||||
cache_k_out_scale = cache_k_scale_tensor / self.cache_quant_config.max_bound
|
||||
cache_v_out_scale = cache_v_scale_tensor / self.cache_quant_config.max_bound
|
||||
|
||||
create_and_set_parameter(layer, "cache_k_scale", cache_k_scale)
|
||||
create_and_set_parameter(layer, "cache_v_scale", cache_v_scale)
|
||||
create_and_set_parameter(layer, "cache_k_out_scale", cache_k_out_scale)
|
||||
create_and_set_parameter(layer, "cache_v_out_scale", cache_v_out_scale)
|
||||
layer.cache_k_scale.set_value(cache_k_scale)
|
||||
layer.cache_v_scale.set_value(cache_v_scale)
|
||||
layer.cache_k_out_scale.set_value(cache_k_out_scale)
|
||||
layer.cache_v_out_scale.set_value(cache_v_out_scale)
|
||||
|
||||
def create_weights(self, layer: nn.Layer, state_dict):
|
||||
def create_weights(self, layer: nn.Layer, **extra_weight_attrs):
|
||||
"""
|
||||
create_weights
|
||||
"""
|
||||
self.prefix = layer.prefix
|
||||
self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_scale"
|
||||
self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_scale"
|
||||
self.cache_k_zp_name = layer.prefix + ".cachek_matmul.activation_zero_point"
|
||||
self.cache_v_zp_name = layer.prefix + ".cachev_matmul.activation_zero_point"
|
||||
|
||||
if self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT8:
|
||||
layer.cache_quant_type_str = "cache_int8"
|
||||
layer.quant_max_bound = 127.0
|
||||
@@ -190,11 +183,91 @@ class KVCacheMethodBase(QuantMethodBase):
|
||||
else:
|
||||
raise NotImplementedError(f"{self.cache_quant_config.quant_type} is not implemented")
|
||||
|
||||
scale_shape = [layer.fd_config.model_config.num_key_value_heads]
|
||||
if self.cache_quant_config.is_channel_wise:
|
||||
scale_shape = [layer.fd_config.model_config.num_key_value_heads, layer.head_dim]
|
||||
|
||||
layer.cache_k_scale = layer.create_parameter(
|
||||
shape=scale_shape,
|
||||
dtype=paddle.get_default_dtype(),
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
layer.cache_v_scale = layer.create_parameter(
|
||||
shape=scale_shape,
|
||||
dtype=paddle.get_default_dtype(),
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
set_weight_attrs(
|
||||
layer.cache_k_scale,
|
||||
{
|
||||
**extra_weight_attrs,
|
||||
},
|
||||
)
|
||||
set_weight_attrs(
|
||||
layer.cache_v_scale,
|
||||
{
|
||||
**extra_weight_attrs,
|
||||
},
|
||||
)
|
||||
layer.cache_k_out_scale = layer.create_parameter(
|
||||
shape=scale_shape,
|
||||
dtype=paddle.get_default_dtype(),
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
layer.cache_v_out_scale = layer.create_parameter(
|
||||
shape=scale_shape,
|
||||
dtype=paddle.get_default_dtype(),
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
|
||||
if self.cache_quant_config.has_zero_point:
|
||||
layer.cache_k_zp = layer.create_parameter(
|
||||
shape=scale_shape,
|
||||
dtype=paddle.get_default_dtype(),
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
layer.cache_v_zp = layer.create_parameter(
|
||||
shape=scale_shape,
|
||||
dtype=paddle.get_default_dtype(),
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
set_weight_attrs(
|
||||
layer.cache_k_zp,
|
||||
{
|
||||
**extra_weight_attrs,
|
||||
},
|
||||
)
|
||||
set_weight_attrs(
|
||||
layer.cache_v_zp,
|
||||
{
|
||||
**extra_weight_attrs,
|
||||
},
|
||||
)
|
||||
|
||||
def process_loaded_weights(self, layer: nn.Layer, state_dict):
|
||||
"""
|
||||
use for loader v0
|
||||
"""
|
||||
self.prefix = layer.prefix
|
||||
self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_scale"
|
||||
self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_scale"
|
||||
self.cache_k_zp_name = layer.prefix + ".cachek_matmul.activation_zero_point"
|
||||
self.cache_v_zp_name = layer.prefix + ".cachev_matmul.activation_zero_point"
|
||||
|
||||
if "block_wise" not in layer.cache_quant_type_str:
|
||||
self.load_scale(layer, state_dict)
|
||||
if self.cache_quant_config.has_zero_point:
|
||||
self.load_zp(layer, state_dict)
|
||||
|
||||
def process_weights_after_loading(self, layer: nn.Layer):
|
||||
"""
|
||||
use for loader v1
|
||||
"""
|
||||
if layer.cache_k_scale._is_initialized():
|
||||
layer.cache_k_out_scale.set_value(1 / layer.cache_k_scale)
|
||||
if layer.cache_v_scale._is_initialized():
|
||||
layer.cache_v_out_scale.set_value(1 / layer.cache_v_scale)
|
||||
|
||||
def apply(self, layer):
|
||||
"""
|
||||
apply
|
||||
|
@@ -539,6 +539,10 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
|
||||
("qkv_proj", "v_proj", None, "v"),
|
||||
("up_gate_proj", "gate_proj", None, "gate"),
|
||||
("up_gate_proj", "up_proj", None, "up"),
|
||||
("attn.cache_k_scale", "cachek_matmul.activation_scale", None, None),
|
||||
("attn.cache_v_scale", "cachev_matmul.activation_scale", None, None),
|
||||
("attn.cache_k_zp", "cachek_matmul.activation_zero_point", None, None),
|
||||
("attn.cache_v_zp", "cachev_matmul.activation_zero_point", None, None),
|
||||
]
|
||||
|
||||
expert_params_mapping = []
|
||||
@@ -563,6 +567,7 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
|
||||
all_param_mapping = general_params_mapping + expert_params_mapping
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
|
||||
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
|
||||
|
||||
for loaded_weight_name, loaded_weight in weights_iterator:
|
||||
@@ -591,7 +596,9 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
|
||||
else:
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
|
||||
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
|
||||
model_sublayer_name = re.sub(
|
||||
r"\.(up_gate_proj_weight|down_proj_weight|weight|cache_k_scale|cache_v_scale)$", "", model_param_name
|
||||
)
|
||||
process_weights_after_loading_fn(model_sublayer_name, param)
|
||||
|
||||
if self.tie_word_embeddings:
|
||||
|
@@ -616,6 +616,10 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
|
||||
("resampler_model", "ernie.resampler_model", None, None),
|
||||
("vision_model", "ernie.vision_model", None, None),
|
||||
("gate_correction_bias", "moe_statics.e_score_correction_bias", None, None),
|
||||
("attn.cache_k_scale", "cachek_matmul.activation_scale", None, None),
|
||||
("attn.cache_v_scale", "cachev_matmul.activation_scale", None, None),
|
||||
("attn.cache_k_zp", "cachek_matmul.activation_zero_point", None, None),
|
||||
("attn.cache_v_zp", "cachev_matmul.activation_zero_point", None, None),
|
||||
# for torch model
|
||||
("resampler_model", "model.resampler_model", None, None),
|
||||
("qkv_proj", "q_proj", None, "q"),
|
||||
@@ -679,7 +683,9 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
|
||||
weight_loader(param, loaded_weight, expert_id=expert_id, shard_id=shard_id)
|
||||
else:
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
|
||||
model_sublayer_name = re.sub(
|
||||
r"\.(up_gate_proj_weight|down_proj_weight|weight|cache_k_scale|cache_v_scale)$", "", model_param_name
|
||||
)
|
||||
process_weights_after_loading_fn(model_sublayer_name, param)
|
||||
if self.tie_word_embeddings:
|
||||
# because we use lazy guard and is not initialized by default
|
||||
|
@@ -709,6 +709,10 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
|
||||
|
||||
if quantization_config is not None:
|
||||
quant_config_name = quantization_config["quantization"]
|
||||
# TODO(YuanRisheng) is_checkpoint_bf16 may need to be removed and replaced by is_quantized in future
|
||||
if "kv_cache_quant_type" in quantization_config and load_config.load_choices == "default_v1":
|
||||
quantization_config["is_checkpoint_bf16"] = True
|
||||
|
||||
elif args.quantization != "None":
|
||||
quantization_config = {}
|
||||
quant_config_name = args.quantization
|
||||
|
@@ -1,15 +0,0 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
194
tests/model_loader/test_load_attention.py
Normal file
194
tests/model_loader/test_load_attention.py
Normal file
@@ -0,0 +1,194 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
from fastdeploy.config import CacheConfig, FDConfig, ModelConfig, ParallelConfig
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
|
||||
|
||||
class MockQuantMethod:
|
||||
"""Mock quantization method for testing."""
|
||||
|
||||
def __init__(self, has_zero_point=False, max_bound=1.0):
|
||||
self.cache_quant_config = Mock()
|
||||
self.cache_quant_config.has_zero_point = has_zero_point
|
||||
self.cache_quant_config.max_bound = max_bound
|
||||
self.create_weights_called = False
|
||||
self.create_weights_args = None
|
||||
|
||||
def create_weights(self, layer, weight_loader):
|
||||
self.create_weights_called = True
|
||||
self.create_weights_args = (layer, weight_loader)
|
||||
|
||||
def process_loaded_weights(self, layer, state_dict):
|
||||
pass
|
||||
|
||||
|
||||
class TestAttentionInitWeight(unittest.TestCase):
|
||||
"""Test cases for Attention.init_weight method."""
|
||||
|
||||
def setUp(self):
|
||||
"""Set up test fixtures."""
|
||||
# Create mock config
|
||||
self.model_config = Mock(spec=ModelConfig)
|
||||
self.model_config.num_attention_heads = 32
|
||||
self.model_config.head_dim = 128
|
||||
self.model_config.num_key_value_heads = 8
|
||||
self.model_config.model = "test_model"
|
||||
self.model_config.num_hidden_layers = 12
|
||||
|
||||
self.parallel_config = Mock(spec=ParallelConfig)
|
||||
self.parallel_config.tensor_parallel_size = 1
|
||||
self.parallel_config.tensor_parallel_rank = 0
|
||||
self.parallel_config.max_num_seqs = 8
|
||||
|
||||
self.cache_config = Mock(spec=CacheConfig)
|
||||
|
||||
self.fd_config = Mock(spec=FDConfig)
|
||||
self.fd_config.model_config = self.model_config
|
||||
self.fd_config.parallel_config = self.parallel_config
|
||||
self.fd_config.cache_config = self.cache_config
|
||||
self.fd_config.quant_config = None
|
||||
self.fd_config.moba_attention_config = None
|
||||
|
||||
def test_init_weight_without_quantization(self):
|
||||
"""Test init_weight without quantization."""
|
||||
# Test case 1: No quantization, no qk_norm
|
||||
attention = Attention(fd_config=self.fd_config, layer_id=0, use_qk_norm=False)
|
||||
|
||||
# Check that q_norm_weight and k_norm_weight are not created
|
||||
self.assertFalse(hasattr(attention, "q_norm_weight"))
|
||||
self.assertFalse(hasattr(attention, "k_norm_weight"))
|
||||
|
||||
def test_init_weight_with_qk_norm(self):
|
||||
"""Test init_weight with qk_norm enabled."""
|
||||
# Test case 2: No quantization, with qk_norm
|
||||
attention = Attention(fd_config=self.fd_config, layer_id=0, use_qk_norm=True, rms_norm_eps=1e-6)
|
||||
|
||||
# Check that q_norm_weight and k_norm_weight are created
|
||||
self.assertTrue(hasattr(attention, "q_norm_weight"))
|
||||
self.assertTrue(hasattr(attention, "k_norm_weight"))
|
||||
|
||||
# Check parameter shapes
|
||||
self.assertEqual(attention.q_norm_weight.shape, [attention.qk_head_dim])
|
||||
self.assertEqual(attention.k_norm_weight.shape, [attention.qk_head_dim])
|
||||
|
||||
# Check parameter dtype
|
||||
self.assertEqual(attention.q_norm_weight.dtype, paddle.float32)
|
||||
self.assertEqual(attention.k_norm_weight.dtype, paddle.float32)
|
||||
|
||||
# Check initial values (should be zeros)
|
||||
np.testing.assert_array_equal(
|
||||
attention.q_norm_weight.numpy(), np.zeros(attention.qk_head_dim, dtype=np.float32)
|
||||
)
|
||||
np.testing.assert_array_equal(
|
||||
attention.k_norm_weight.numpy(), np.zeros(attention.qk_head_dim, dtype=np.float32)
|
||||
)
|
||||
|
||||
def test_init_weight_with_quantization(self):
|
||||
"""Test init_weight with quantization enabled."""
|
||||
# Test case 3: With quantization
|
||||
mock_quant_method = MockQuantMethod()
|
||||
self.fd_config.quant_config = Mock()
|
||||
self.fd_config.quant_config.get_quant_method = Mock(return_value=mock_quant_method)
|
||||
|
||||
attention = Attention(fd_config=self.fd_config, layer_id=0, use_qk_norm=False)
|
||||
|
||||
# Check that quant_method.create_weights was called
|
||||
self.assertTrue(mock_quant_method.create_weights_called)
|
||||
self.assertEqual(mock_quant_method.create_weights_args[0], attention)
|
||||
# Check that weight_loader is passed correctly
|
||||
self.assertIsNotNone(mock_quant_method.create_weights_args[1])
|
||||
|
||||
|
||||
class TestAttentionWeightLoader(unittest.TestCase):
|
||||
"""Test cases for Attention.weight_loader method."""
|
||||
|
||||
def setUp(self):
|
||||
"""Set up test fixtures."""
|
||||
# Create mock config
|
||||
self.model_config = Mock(spec=ModelConfig)
|
||||
self.model_config.num_attention_heads = 32
|
||||
self.model_config.head_dim = 128
|
||||
self.model_config.num_key_value_heads = 8
|
||||
self.model_config.model = "test_model"
|
||||
self.model_config.num_hidden_layers = 12
|
||||
|
||||
self.parallel_config = Mock(spec=ParallelConfig)
|
||||
self.parallel_config.tensor_parallel_size = 1
|
||||
self.parallel_config.tensor_parallel_rank = 0
|
||||
self.parallel_config.max_num_seqs = 8
|
||||
|
||||
self.cache_config = Mock(spec=CacheConfig)
|
||||
|
||||
self.fd_config = Mock(spec=FDConfig)
|
||||
self.fd_config.model_config = self.model_config
|
||||
self.fd_config.parallel_config = self.parallel_config
|
||||
self.fd_config.cache_config = self.cache_config
|
||||
self.fd_config.moba_attention_config = None
|
||||
|
||||
# Create mock quant method
|
||||
self.mock_quant_method = MockQuantMethod()
|
||||
self.fd_config.quant_config = Mock()
|
||||
self.fd_config.quant_config.get_quant_method = Mock(return_value=self.mock_quant_method)
|
||||
|
||||
# Create attention layer
|
||||
self.attention = Attention(fd_config=self.fd_config, layer_id=0, use_qk_norm=False)
|
||||
|
||||
def test_weight_loader_without_zero_point(self):
|
||||
"""Test weight_loader without zero point."""
|
||||
# Test case 1: No zero point
|
||||
mock_quant_method = MockQuantMethod(has_zero_point=False, max_bound=8.0)
|
||||
self.attention.quant_method = mock_quant_method
|
||||
|
||||
# Create mock parameter
|
||||
param = paddle.zeros([10], dtype=paddle.float32)
|
||||
|
||||
# Create mock loaded weight
|
||||
loaded_weight = np.array([2.0, 4.0, 8.0, 1.0, 0.5, 2.0, 4.0, 8.0, 1.0, 0.5])
|
||||
|
||||
# Call weight_loader
|
||||
self.attention.weight_loader(param, loaded_weight)
|
||||
|
||||
# Check that the parameter is updated correctly
|
||||
expected_value = 8.0 / loaded_weight
|
||||
np.testing.assert_array_almost_equal(param.numpy(), expected_value.astype(np.float32))
|
||||
|
||||
def test_weight_loader_with_zero_point(self):
|
||||
"""Test weight_loader with zero point."""
|
||||
# Test case 2: With zero point
|
||||
mock_quant_method = MockQuantMethod(has_zero_point=True, max_bound=8.0)
|
||||
self.attention.quant_method = mock_quant_method
|
||||
|
||||
# Create mock parameter
|
||||
param = paddle.zeros([10], dtype=paddle.float32)
|
||||
|
||||
# Create mock loaded weight
|
||||
loaded_weight = np.array([2.0, 4.0, 8.0, 1.0, 0.5, 2.0, 4.0, 8.0, 1.0, 0.5])
|
||||
|
||||
# Call weight_loader
|
||||
self.attention.weight_loader(param, loaded_weight)
|
||||
|
||||
# Check that the parameter is updated correctly
|
||||
expected_value = 1.0 / loaded_weight
|
||||
np.testing.assert_array_almost_equal(param.numpy(), expected_value.astype(np.float32))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
157
tests/quantization/test_kv_cache.py
Normal file
157
tests/quantization/test_kv_cache.py
Normal file
@@ -0,0 +1,157 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy.model_executor.layers.quantization.kv_cache import (
|
||||
KVCacheMethodBase,
|
||||
KvCacheQuantConfig,
|
||||
KvCacheQuantzationTypes,
|
||||
)
|
||||
|
||||
sys.path.append("../")
|
||||
from tests.utils import get_default_test_fd_config
|
||||
|
||||
|
||||
class MockLayer(nn.Layer):
|
||||
def __init__(
|
||||
self,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.fd_config = get_default_test_fd_config()
|
||||
self.fd_config.model_config.num_key_value_heads = 1
|
||||
self.head_dim = 1
|
||||
self.prefix = "mock_layer"
|
||||
self.cache_k_scale = None
|
||||
self.cache_v_scale = None
|
||||
self.cache_k_out_scale = None
|
||||
self.cache_v_out_scale = None
|
||||
self.cache_k_zp = None
|
||||
self.cache_v_zp = None
|
||||
|
||||
|
||||
class TestKVCacheMethodBase(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.layer = MockLayer()
|
||||
|
||||
def test_create_weights_int8(self):
|
||||
# Test INT8 without zero point
|
||||
config = KvCacheQuantConfig(
|
||||
kv_cache_quant_type=KvCacheQuantzationTypes.INT8, is_channel_wise=False, has_zero_point=False
|
||||
)
|
||||
method = KVCacheMethodBase(config)
|
||||
method.create_weights(self.layer)
|
||||
|
||||
self.assertEqual(self.layer.cache_quant_type_str, "cache_int8")
|
||||
self.assertEqual(self.layer.quant_max_bound, 127.0)
|
||||
self.assertEqual(self.layer.quant_min_bound, -127.0)
|
||||
self.assertIsNotNone(self.layer.cache_k_scale)
|
||||
self.assertIsNotNone(self.layer.cache_v_scale)
|
||||
self.assertIsNotNone(self.layer.cache_k_out_scale)
|
||||
self.assertIsNotNone(self.layer.cache_v_out_scale)
|
||||
self.assertIsNone(self.layer.cache_k_zp)
|
||||
self.assertIsNone(self.layer.cache_v_zp)
|
||||
self.assertEqual(self.layer.cache_k_scale.shape, [1])
|
||||
|
||||
def test_create_weights_int8_channel_wise(self):
|
||||
# Test INT8 with channel wise
|
||||
config = KvCacheQuantConfig(
|
||||
kv_cache_quant_type=KvCacheQuantzationTypes.INT8, is_channel_wise=True, has_zero_point=False
|
||||
)
|
||||
method = KVCacheMethodBase(config)
|
||||
method.create_weights(self.layer)
|
||||
|
||||
self.assertEqual(self.layer.cache_k_scale.shape, [1, 1])
|
||||
|
||||
def test_create_weights_int4_zp(self):
|
||||
# Test INT4 with zero point
|
||||
config = KvCacheQuantConfig(
|
||||
kv_cache_quant_type=KvCacheQuantzationTypes.INT4_ZP, is_channel_wise=False, has_zero_point=True
|
||||
)
|
||||
method = KVCacheMethodBase(config)
|
||||
method.create_weights(self.layer)
|
||||
|
||||
self.assertEqual(self.layer.cache_quant_type_str, "cache_int4_zp")
|
||||
self.assertEqual(self.layer.quant_max_bound, 7.0)
|
||||
self.assertEqual(self.layer.quant_min_bound, -7.0)
|
||||
self.assertIsNotNone(self.layer.cache_k_zp)
|
||||
self.assertIsNotNone(self.layer.cache_v_zp)
|
||||
|
||||
def test_process_loaded_weights_int8(self):
|
||||
# Test process INT8 weights
|
||||
config = KvCacheQuantConfig(
|
||||
kv_cache_quant_type=KvCacheQuantzationTypes.INT8, is_channel_wise=False, has_zero_point=False
|
||||
)
|
||||
method = KVCacheMethodBase(config)
|
||||
method.create_weights(self.layer)
|
||||
|
||||
state_dict = {
|
||||
"mock_layer.cachek_matmul.activation_scale": np.array([2.0], dtype=np.float32),
|
||||
"mock_layer.cachev_matmul.activation_scale": np.array([3.0], dtype=np.float32),
|
||||
}
|
||||
method.process_loaded_weights(self.layer, state_dict)
|
||||
|
||||
self.assertAlmostEqual(self.layer.cache_k_scale.numpy()[0], 127.0 / 2.0, places=3)
|
||||
self.assertAlmostEqual(self.layer.cache_v_scale.numpy()[0], 127.0 / 3.0, places=3)
|
||||
self.assertAlmostEqual(self.layer.cache_k_out_scale.numpy()[0], 2.0 / 127.0, places=3)
|
||||
self.assertAlmostEqual(self.layer.cache_v_out_scale.numpy()[0], 3.0 / 127.0, places=3)
|
||||
|
||||
def test_process_loaded_weights_int4_zp(self):
|
||||
# Test process INT4 with zero point weights
|
||||
config = KvCacheQuantConfig(
|
||||
kv_cache_quant_type=KvCacheQuantzationTypes.INT4_ZP, is_channel_wise=False, has_zero_point=True
|
||||
)
|
||||
method = KVCacheMethodBase(config)
|
||||
method.create_weights(self.layer)
|
||||
|
||||
state_dict = {
|
||||
"mock_layer.cachek_matmul.activation_scale": np.array([2.0], dtype=np.float32),
|
||||
"mock_layer.cachev_matmul.activation_scale": np.array([3.0], dtype=np.float32),
|
||||
"mock_layer.cachek_matmul.activation_zero_point": np.array([1.0], dtype=np.float32),
|
||||
"mock_layer.cachev_matmul.activation_zero_point": np.array([2.0], dtype=np.float32),
|
||||
}
|
||||
method.process_loaded_weights(self.layer, state_dict)
|
||||
|
||||
self.assertAlmostEqual(self.layer.cache_k_scale.numpy()[0], 1.0 / 2.0, places=3)
|
||||
self.assertAlmostEqual(self.layer.cache_v_scale.numpy()[0], 1.0 / 3.0, places=3)
|
||||
self.assertAlmostEqual(self.layer.cache_k_out_scale.numpy()[0], 2.0)
|
||||
self.assertAlmostEqual(self.layer.cache_v_out_scale.numpy()[0], 3.0)
|
||||
self.assertAlmostEqual(self.layer.cache_k_zp.numpy()[0], 1.0)
|
||||
self.assertAlmostEqual(self.layer.cache_v_zp.numpy()[0], 2.0)
|
||||
|
||||
def test_process_weights_after_loading_initialized(self):
|
||||
# Test process weights after loading when scale is initialized
|
||||
config = KvCacheQuantConfig(
|
||||
kv_cache_quant_type=KvCacheQuantzationTypes.INT8, is_channel_wise=False, has_zero_point=False
|
||||
)
|
||||
method = KVCacheMethodBase(config)
|
||||
method.create_weights(self.layer)
|
||||
|
||||
# Simulate initialized scale
|
||||
self.layer.cache_k_scale.set_value(paddle.to_tensor([2.0], dtype="float32"))
|
||||
self.layer.cache_v_scale.set_value(paddle.to_tensor([3.0], dtype="float32"))
|
||||
|
||||
method.process_weights_after_loading(self.layer)
|
||||
|
||||
self.assertAlmostEqual(self.layer.cache_k_out_scale.numpy()[0], 0.5)
|
||||
self.assertAlmostEqual(self.layer.cache_v_out_scale.numpy()[0], 1.0 / 3.0, places=3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Reference in New Issue
Block a user