[Other] Integrate paddle2coreml tool into FastDeploy (#1460)

Integration of paddle2coreml tool
This commit is contained in:
lishicheng1996
2023-02-28 16:22:05 +08:00
committed by GitHub
parent fe9aff15f2
commit b324f3659b
4 changed files with 141 additions and 2 deletions

View File

@@ -6,7 +6,7 @@ import uvicorn
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'tools', choices=['compress', 'convert', 'simple_serving'])
'tools', choices=['compress', 'convert', 'simple_serving', 'paddle2coreml'])
## argumentments for auto compression
parser.add_argument(
'--config_path',
@@ -84,6 +84,49 @@ def argsparser():
help="Simple serving host IP address")
parser.add_argument(
"--port", type=int, default=8000, help="Simple serving host port")
## arguments for paddle2coreml
parser.add_argument(
"--p2c_paddle_model_dir",
type=str,
default=None,
required=True,
help="define paddle model path")
parser.add_argument(
"--p2c_coreml_model_dir",
type=str,
default=None,
required=True,
help="define generated coreml model path")
parser.add_argument(
"--p2c_coreml_model_name",
type=str,
default="coreml_model",
required=False,
help="define generated coreml model name")
parser.add_argument(
"--p2c_input_names",
type=str,
default=None,
required=True,
help="define input names")
parser.add_argument(
"--p2c_input_dtypes",
type=str,
default="float32",
required=True,
help="define input dtypes")
parser.add_argument(
"--p2c_input_shapes",
type=str,
default=None,
required=True,
help="define input shapes")
parser.add_argument(
"--p2c_output_names",
type=str,
default=None,
required=True,
help="define output names")
## arguments for other tools
return parser
@@ -170,6 +213,51 @@ def main():
port=args.port,
app_dir='.',
log_config=custom_logging_config)
if args.tools == "paddle2coreml":
import coremltools as ct
import os
import numpy as np
def type_to_np_dtype(dtype):
if dtype == 'float32':
return np.float32
elif dtype == 'float64':
return np.float64
elif dtype == 'int32':
return np.int32
elif dtype == 'int64':
return np.int64
elif dtype == 'uint8':
return np.uint8
elif dtype == 'uint16':
return np.uint16
elif dtype == 'uint32':
return np.uint32
elif dtype == 'uint64':
return np.uint64
elif dtype == 'int8':
return np.int8
elif dtype == 'int16':
return np.int16
else:
raise Exception("Unsupported dtype: {}".format(dtype))
input_names = args.p2c_input_names.split(' ')
input_shapes = [[int(i) for i in shape.split(',')] for shape in args.p2c_input_shapes.split(' ')]
input_dtypes = map(type_to_np_dtype, args.p2c_input_dtypes.split(' '))
output_names = args.p2c_output_names.split(' ')
sample_input = [ct.TensorType(
name=k,
shape=s,
dtype=d,
) for k, s, d in zip(input_names, input_shapes, input_dtypes)]
coreml_model = ct.convert(
args.p2c_paddle_model_dir,
convert_to="mlprogram",
minimum_deployment_target=ct.target.macOS13,
inputs=sample_input,
outputs=[ct.TensorType(name=name) for name in output_names],
)
coreml_model.save(os.path.join(args.p2c_coreml_model_dir, args.p2c_coreml_model_name))
if __name__ == '__main__':