mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	Add Examples to deploy quantized models (#342)
* Add PaddleOCR Support * Add PaddleOCR Support * Add PaddleOCRv3 Support * Add PaddleOCRv3 Support * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleOCRv3 Support * Add PaddleOCRv3 Supports * Add PaddleOCRv3 Suport * Fix Rec diff * Remove useless functions * Remove useless comments * Add PaddleOCRv2 Support * Add PaddleOCRv3 & PaddleOCRv2 Support * remove useless parameters * Add utils of sorting det boxes * Fix code naming convention * Fix code naming convention * Fix code naming convention * Fix bug in the Classify process * Imporve OCR Readme * Fix diff in Cls model * Update Model Download Link in Readme * Fix diff in PPOCRv2 * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Fix conflict * Add readme for OCRResult * Improve OCR readme * Add OCRResult readme * Improve OCR readme * Improve OCR readme * Add Model Quantization Demo * Fix Model Quantization Readme * Fix Model Quantization Readme * Add the function to do PTQ quantization * Improve quant tools readme * Improve quant tool readme * Improve quant tool readme * Add PaddleInference-GPU for OCR Rec model * Add QAT method to fastdeploy-quantization tool * Remove examples/slim for now * Move configs folder * Add Quantization Support for Classification Model * Imporve ways of importing preprocess * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Improve Quantization configs and readme * Add support for multi-inputs model * Add backends and params file for YOLOv7 * Add quantized model deployment support for YOLO series * Fix YOLOv5 quantize readme * Fix YOLO quantize readme * Fix YOLO quantize readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Fix bug, change Fronted to ModelFormat * Change Fronted to ModelFormat * Add examples to deploy quantized paddleclas models * Fix readme * Add quantize Readme * Add quantize Readme * Add quantize Readme * Modify readme of quantization tools * Modify readme of quantization tools * Improve quantization tools readme * Improve quantization readme * Improve PaddleClas quantized model deployment readme * Add PPYOLOE-l quantized deployment examples * Improve quantization tools readme
This commit is contained in:
		| @@ -0,0 +1,76 @@ | ||||
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||||
| // | ||||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| // you may not use this file except in compliance with the License. | ||||
| // You may obtain a copy of the License at | ||||
| // | ||||
| //     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| // | ||||
| // Unless required by applicable law or agreed to in writing, software | ||||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| // See the License for the specific language governing permissions and | ||||
| // limitations under the License. | ||||
|  | ||||
| #include "fastdeploy/vision.h" | ||||
| #ifdef WIN32 | ||||
| const char sep = '\\'; | ||||
| #else | ||||
| const char sep = '/'; | ||||
| #endif | ||||
|  | ||||
| void InitAndInfer(const std::string& model_dir, const std::string& image_file, | ||||
|                   const fastdeploy::RuntimeOption& option) { | ||||
|   auto model_file = model_dir + sep + "inference.pdmodel"; | ||||
|   auto params_file = model_dir + sep + "inference.pdiparams"; | ||||
|   auto config_file = model_dir + sep + "inference_cls.yaml"; | ||||
|  | ||||
|   auto model = fastdeploy::vision::classification::PaddleClasModel( | ||||
|       model_file, params_file, config_file, option); | ||||
|  | ||||
|   assert(model.Initialized()); | ||||
|  | ||||
|   auto im = cv::imread(image_file); | ||||
|   auto im_bak = im.clone(); | ||||
|  | ||||
|   fastdeploy::vision::ClassifyResult res; | ||||
|   if (!model.Predict(&im, &res)) { | ||||
|     std::cerr << "Failed to predict." << std::endl; | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   std::cout << res.Str() << std::endl; | ||||
|  | ||||
| } | ||||
|  | ||||
| int main(int argc, char* argv[]) { | ||||
|   if (argc < 4) { | ||||
|     std::cout << "Usage: infer_demo path/to/quant_model " | ||||
|                  "path/to/image " | ||||
|                  "run_option, " | ||||
|                  "e.g ./infer_demo ./ResNet50_vd_quant ./test.jpeg 0" | ||||
|               << std::endl; | ||||
|     std::cout << "The data type of run_option is int, 0: run on cpu with ORT " | ||||
|                  "backend; 1: run " | ||||
|                  "on gpu with TensorRT backend. " | ||||
|               << std::endl; | ||||
|     return -1; | ||||
|   } | ||||
|  | ||||
|   fastdeploy::RuntimeOption option; | ||||
|   int flag = std::atoi(argv[3]); | ||||
|  | ||||
|   if (flag == 0) { | ||||
|     option.UseCpu(); | ||||
|     option.UseOrtBackend(); | ||||
|   } else if (flag == 1) { | ||||
|     option.UseGpu(); | ||||
|     option.UseTrtBackend(); | ||||
|     option.SetTrtInputShape("inputs",{1, 3, 224, 224}); | ||||
|   } | ||||
|  | ||||
|   std::string model_dir = argv[1]; | ||||
|   std::string test_image = argv[2]; | ||||
|   InitAndInfer(model_dir, test_image, option); | ||||
|   return 0; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 yunyaoXYY
					yunyaoXYY