mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[BugFix] support real batch_size (#3109)
* support real bsz * fix * fix xpu_model_runner.py,gpu_model_runner.py,gcu_model_runner.py,iluvatar_model_runner.py * add event_loop_ep * fix * Add comments * fix * support mtp real_batch_size * fix * self.tmp_seq_lens_this_time->self.seq_lens_this_time_buffer * fix * fix VL real_seq_lens_this_time * fix * fix mtp * fix * fix mtp * fix xpu * fix
This commit is contained in:
@@ -164,6 +164,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
if self.speculative_method == "ngram":
|
||||
self.proposer = NgramProposer(self.fd_config)
|
||||
elif self.speculative_method == "mtp":
|
||||
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
|
||||
self.proposer = MTPProposer(
|
||||
self.fd_config,
|
||||
self.get_model(),
|
||||
@@ -193,9 +194,11 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
|
||||
return self.guided_backend.get_logits_processor(schemata_key=schemata_key), schemata_key
|
||||
|
||||
def insert_tasks_v1(self, req_dicts: List[Request]):
|
||||
def insert_tasks_v1(self, req_dicts: List[Request], num_running_requests: int = None):
|
||||
"""
|
||||
Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
|
||||
req_dict: A list of Request dict
|
||||
num_running_requests: batch_size
|
||||
"""
|
||||
# NOTE(luotingdan): Lazy initialize kv cache
|
||||
if "caches" not in self.share_inputs:
|
||||
@@ -264,7 +267,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
self.share_inputs["stop_flags"][idx : idx + 1] = False
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
|
||||
self.seq_lens_this_time_buffer[idx : idx + 1] = length
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
|
||||
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = len(input_ids)
|
||||
@@ -286,7 +289,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
logger.debug(f"Handle preempted request {request} at idx {idx}")
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
|
||||
self.share_inputs["stop_flags"][idx : idx + 1] = True
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 0
|
||||
self.seq_lens_this_time_buffer[idx : idx + 1] = 0
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["is_block_step"][idx : idx + 1] = False
|
||||
@@ -328,10 +331,13 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
|
||||
if has_prefill_task:
|
||||
self.share_inputs["not_need_stop"][0] = True
|
||||
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests]
|
||||
|
||||
def insert_prefill_inputs(self, req_dicts: List[Request]):
|
||||
def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests: int = None):
|
||||
"""
|
||||
Process inputs for prefill tasks and insert it to share_inputs buffer
|
||||
req_dict: A list of Request dict
|
||||
num_running_requests: batch_size
|
||||
TODO(gongshaotian): Refactor this func
|
||||
"""
|
||||
|
||||
@@ -365,7 +371,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["prompt_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = length
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 1
|
||||
self.seq_lens_this_time_buffer[idx : idx + 1] = 1
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = length
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = length
|
||||
@@ -377,7 +383,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
request.draft_token_ids[0:num_prefill_send_token],
|
||||
dtype="int64",
|
||||
)
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = num_prefill_send_token
|
||||
self.seq_lens_this_time_buffer[idx : idx + 1] = num_prefill_send_token
|
||||
else:
|
||||
self.share_inputs["pre_ids"][idx : idx + 1] = -1
|
||||
self.share_inputs["step_idx"][idx : idx + 1] = 0
|
||||
@@ -412,7 +418,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = token_chunk_size
|
||||
self.seq_lens_this_time_buffer[idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = token_chunk_size
|
||||
@@ -430,7 +436,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
else:
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
|
||||
self.seq_lens_this_time_buffer[idx : idx + 1] = length
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = length
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = length
|
||||
@@ -516,8 +522,10 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
|
||||
self.share_inputs["not_need_stop"][0] = True
|
||||
|
||||
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests]
|
||||
|
||||
if self.speculative_method in ["mtp"]:
|
||||
self.proposer.insert_prefill_inputs(req_dicts)
|
||||
self.proposer.insert_prefill_inputs(req_dicts, num_running_requests)
|
||||
|
||||
def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int, expected_decode_len: int):
|
||||
"""Set dummy prefill inputs to share_inputs"""
|
||||
@@ -543,7 +551,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["input_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
|
||||
self.share_inputs["prompt_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
|
||||
self.share_inputs["eos_token_id"][:] = np.array([2], dtype="int64").reshape(-1, 1)
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = input_length
|
||||
self.seq_lens_this_time_buffer[idx : idx + 1] = input_length
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = input_length
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = input_length
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
|
||||
@@ -561,6 +569,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(
|
||||
idx * block_num, (idx + 1) * block_num, 1
|
||||
)
|
||||
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
|
||||
|
||||
def _init_share_inputs(self, max_num_seqs: int):
|
||||
"""
|
||||
@@ -611,7 +620,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["max_length"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
|
||||
)
|
||||
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs, 0, dtype="int32")
|
||||
self.seq_lens_this_time_buffer = paddle.full(max_num_seqs, 0, dtype="int32")
|
||||
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
@@ -1255,6 +1264,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
def execute_model(
|
||||
self,
|
||||
model_forward_batch: Optional[List[Request]] = None,
|
||||
num_running_requests: int = None,
|
||||
) -> Optional[ModelRunnerOutput]:
|
||||
"""
|
||||
The Entrance of model execute.
|
||||
@@ -1263,6 +1273,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
class at the server level, which is too granular for ModelRunner.
|
||||
We plan to replace it with 'ModelForwardBatch'.
|
||||
intermediate_tensors:
|
||||
num_running_requests: batch_size
|
||||
"""
|
||||
# 1. Prepare inputs of model and sampler.
|
||||
skip_idx_list = self._get_skip_idx(model_forward_batch)
|
||||
@@ -1364,8 +1375,8 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
|
||||
enable_thinking=(self.share_inputs["enable_thinking"] if self.enable_mm else None),
|
||||
think_end_id=(self.model_config.think_end_id if self.enable_mm else -1),
|
||||
need_think_end=(self.share_inputs["need_think_end"] if self.enable_mm else None),
|
||||
reasoning_index=(self.share_inputs["reasoning_index"] if self.enable_mm else None),
|
||||
need_think_end=(self.share_inputs["need_think_end"][:num_running_requests] if self.enable_mm else None),
|
||||
reasoning_index=(self.share_inputs["reasoning_index"][:num_running_requests] if self.enable_mm else None),
|
||||
stop_token_ids=self.share_inputs["stop_seqs"],
|
||||
stop_seqs_len=self.share_inputs["stop_seqs_len"],
|
||||
)
|
||||
@@ -1405,6 +1416,10 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
|
||||
self._update_chunked_prefill(model_forward_batch)
|
||||
self._add_cache(model_forward_batch)
|
||||
|
||||
self.seq_lens_this_time_buffer[:num_running_requests].copy_(
|
||||
self.share_inputs["seq_lens_this_time"][:num_running_requests], False
|
||||
)
|
||||
return None
|
||||
|
||||
def _add_cache(self, model_forward_batch) -> None:
|
||||
|
Reference in New Issue
Block a user