[Feature] support seed parameter (#3161)

* support seed

* fix

* add SamplingMetadata seed test

* The next_tokens values are inconsistent!

* add air and rejection seed test

* fix

* add SamplingParams seed test

* fix seed=0

* Default to defualt

* fix

* fix args_utils

* fix review

* fix review

* fix

* fix

* add xpu,gcu,iluvatar support seed

* fix
This commit is contained in:
lizexu123
2025-08-06 15:20:47 +08:00
committed by GitHub
parent 20839abccf
commit afff4d37ea
15 changed files with 386 additions and 5 deletions

View File

@@ -122,6 +122,7 @@ class ModelConfig:
self.enable_mm = False
self.enable_redundant_experts = False
self.redundant_experts_num = 0
self.seed = 0
self.quantization = None
for key, value in args.items():
if hasattr(self, key):

View File

@@ -316,6 +316,11 @@ class EngineArgs:
Must be explicitly enabled via the `--enable-logprob` startup parameter to output logprob values.
"""
seed: int = 0
"""
Random seed to use for initialization. If not set, defaults to 0.
"""
enable_early_stop: bool = False
"""
Flag to enable early stop. Default is False (disabled).
@@ -484,6 +489,12 @@ class EngineArgs:
default=EngineArgs.enable_logprob,
help="Enable output of token-level log probabilities.",
)
model_group.add_argument(
"--seed",
type=int,
default=EngineArgs.seed,
help="Random seed for initialization. If not specified, defaults to 0.",
)
model_group.add_argument(
"--enable-early-stop",
action="store_true",

View File

@@ -43,6 +43,7 @@ class SamplingMetadata:
top_p: paddle.Tensor
top_k: Optional[paddle.Tensor] = None
min_p: Optional[paddle.Tensor] = None
seed: Optional[paddle.Tensor] = None
max_num_logprobs: Optional[int] = None
enable_early_stop: Optional[int] = False
stop_flags: Optional[paddle.Tensor] = None

View File

@@ -282,7 +282,9 @@ class Sampler(nn.Layer):
probs = min_p_sampling(probs, sampling_metadata.min_p)
_, next_tokens = top_k_top_p_sampling(probs, sampling_metadata.top_p, sampling_metadata.top_k)
_, next_tokens = top_k_top_p_sampling(
probs, sampling_metadata.top_p, sampling_metadata.top_k, seed=sampling_metadata.seed[0, 0]
)
logprobs_tensors = (
None if num_logprobs is None else self.gather_logprobs(raw_logprobs, num_logprobs, token_ids=next_tokens)

View File

@@ -29,6 +29,8 @@ from logging.handlers import BaseRotatingHandler
from pathlib import Path
from typing import Literal, TypeVar, Union
import numpy as np
import paddle
import requests
import yaml
from aistudio_sdk.snapshot_download import snapshot_download as aistudio_download
@@ -295,6 +297,13 @@ def extract_tar(tar_path, output_dir):
raise RuntimeError(f"Extraction failed: {e!s}")
def set_random_seed(seed: int) -> None:
if seed is not None:
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
def download_model(url, output_dir, temp_tar):
"""
下载模型,并将其解压到指定目录。

View File

@@ -540,6 +540,7 @@ class GCUModelRunner(ModelRunnerBase):
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
min_p=self.share_inputs["min_p"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],
prompt_ids=self.share_inputs["prompt_ids"],

View File

@@ -22,7 +22,7 @@ from paddle import nn
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.utils import get_logger
from fastdeploy.utils import get_logger, set_random_seed
from fastdeploy.worker.gcu_model_runner import GCUModelRunner
from fastdeploy.worker.output import ModelRunnerOutput
from fastdeploy.worker.worker_base import WorkerBase
@@ -60,6 +60,7 @@ class GcuWorker(WorkerBase):
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
set_random_seed(self.fd_config.model_config.seed)
# Construct model runner
self.model_runner: GCUModelRunner = GCUModelRunner(
fd_config=self.fd_config,
@@ -128,6 +129,7 @@ class GcuWorker(WorkerBase):
self.model_runner.sot_warmup()
# 2. Triger cuda grpah capture
self.model_runner.capture_model()
set_random_seed(self.fd_config.model_config.seed)
def check_health(self) -> bool:
""" """

View File

@@ -131,6 +131,7 @@ class GPUModelRunner(ModelRunnerBase):
fill_value=4,
dtype="int64",
)
self.restore_chunked_prefill_request = dict()
# Initialize attention Backend
@@ -813,6 +814,7 @@ class GPUModelRunner(ModelRunnerBase):
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
min_p=self.share_inputs["min_p"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],
prompt_ids=self.share_inputs["prompt_ids"],

View File

@@ -27,7 +27,7 @@ from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.platforms import current_platform
from fastdeploy.plugins.model_runner import load_model_runner_plugins
from fastdeploy.utils import get_logger
from fastdeploy.utils import get_logger, set_random_seed
from fastdeploy.worker.model_runner_base import ModelRunnerBase
from fastdeploy.worker.output import ModelRunnerOutput
from fastdeploy.worker.worker_base import WorkerBase
@@ -75,6 +75,7 @@ class GpuWorker(WorkerBase):
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
set_random_seed(self.fd_config.model_config.seed)
# Construct model runner
self.model_runner: ModelRunnerBase = ModelRunner(
fd_config=self.fd_config,
@@ -129,6 +130,7 @@ class GpuWorker(WorkerBase):
# 2. Profile run
self.model_runner.profile_run()
set_random_seed(self.fd_config.model_config.seed)
# 3. Statistical memory information
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(local_rank)

View File

@@ -509,6 +509,7 @@ class IluvatarModelRunner(ModelRunnerBase):
temperature=self.share_inputs["temperature"],
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
seed=self.share_inputs["seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],
prompt_ids=self.share_inputs["prompt_ids"],

View File

@@ -23,7 +23,7 @@ from paddle import nn
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.utils import get_logger
from fastdeploy.utils import get_logger, set_random_seed
from fastdeploy.worker.iluvatar_model_runner import IluvatarModelRunner
from fastdeploy.worker.output import ModelRunnerOutput
from fastdeploy.worker.worker_base import WorkerBase
@@ -60,6 +60,7 @@ class IluvatarWorker(WorkerBase):
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
set_random_seed(self.fd_config.model_config.seed)
# Construct model runner
self.model_runner: IluvatarModelRunner = IluvatarModelRunner(
fd_config=self.fd_config,
@@ -130,6 +131,7 @@ class IluvatarWorker(WorkerBase):
# 2. Triger cuda grpah capture
self.model_runner.capture_model()
set_random_seed(self.fd_config.model_config.seed)
def check_health(self) -> bool:
""" """

View File

@@ -677,6 +677,7 @@ class XPUModelRunner(ModelRunnerBase):
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
min_p=self.share_inputs["min_p"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],
frequency_penalties=self.share_inputs["frequency_score"],

View File

@@ -23,7 +23,7 @@ from paddle import nn
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.utils import get_logger
from fastdeploy.utils import get_logger, set_random_seed
from fastdeploy.worker.output import ModelRunnerOutput
from fastdeploy.worker.worker_base import WorkerBase
from fastdeploy.worker.xpu_model_runner import XPUModelRunner
@@ -60,6 +60,7 @@ class XpuWorker(WorkerBase):
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
set_random_seed(self.fd_config.model_config.seed)
# Construct model runner
self.model_runner: XPUModelRunner = XPUModelRunner(
fd_config=self.fd_config,
@@ -110,6 +111,7 @@ class XpuWorker(WorkerBase):
self.model_runner.prepare_profile()
self.model_runner.profile_run()
set_random_seed(self.fd_config.model_config.seed)
total_available_memory = int(total_memory * self.cache_config.gpu_memory_utilization)
used_memory = xpu_get_used_global_memory(int(self.device_ids[self.local_rank]))

View File

@@ -191,6 +191,29 @@ def test_chat_completion(llm):
pytest.fail(f"Chat case {i + 1} failed")
def test_seed(llm):
"""
Test chat completion with same seed
"""
prompt = "请介绍下中国的四大发明,用一句话概述每个发明。"
sampling_params = SamplingParams(temperature=0.1, seed=1, max_tokens=100)
num_runs = 5
results = []
try:
for i in range(num_runs):
outputs = llm.generate(prompt, sampling_params)
results.append(outputs[0].outputs.text)
assert all([result == results[0] for result in results]), "Results are not identical."
print("All results are identical.")
except Exception:
print("Failed during prompt generation.")
traceback.print_exc()
pytest.fail("Prompt generation test failed")
if __name__ == "__main__":
"""
Main entry point for the test script.

View File

@@ -0,0 +1,321 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import signal
import socket
import subprocess
import sys
import time
import pytest
import requests
def is_port_open(host: str, port: int, timeout=1.0):
"""Check if a TCP port is open on the given host."""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""Kill processes that are listening on the given port."""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
except subprocess.CalledProcessError:
pass
def clean_specific_ports(ports_list):
"""Kill all processes occupying the specified ports."""
for port in ports_list:
kill_process_on_port(port)
def create_server_process_with_sampling(sampling_class: str, api_port: int, queue_port: int, metrics_port: int):
"""
Create and start the API server process with specified sampling class and ports.
Returns the process object.
"""
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, "Qwen3-30B-A3B")
else:
model_path = "./Qwen3-30B-A3B"
log_path = f"server_{sampling_class}_{api_port}.log"
cmd = [
sys.executable,
"-m",
"fastdeploy.entrypoints.openai.api_server",
"--model",
model_path,
"--port",
str(api_port),
"--tensor-parallel-size",
"1",
"--engine-worker-queue-port",
str(queue_port),
"--metrics-port",
str(metrics_port),
"--max-model-len",
"32768",
"--max-num-seqs",
"50",
"--quantization",
"wint4",
]
env = os.environ.copy()
env["FD_SAMPLING_CLASS"] = sampling_class
print(f"Starting server with FD_SAMPLING_CLASS={sampling_class} on port {api_port}")
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True,
env=env,
)
return process
def wait_for_server_ready_on_port(api_port: int, timeout=300):
"""Wait for the API server to be ready on specified port."""
for _ in range(timeout):
if is_port_open("127.0.0.1", api_port):
print(f"API server is up on port {api_port}")
return True
time.sleep(1)
return False
# ==========================
# Fixtures for pytest
# ==========================
@pytest.fixture
def headers():
"""Returns common HTTP request headers."""
return {"Content-Type": "application/json"}
@pytest.fixture
def consistent_payload():
"""Returns a fixed payload for consistency testing with fixed seed."""
return {
"messages": [
{
"role": "user",
"content": "用一句话介绍 PaddlePaddle, 30字以内 /no_think",
}
],
"temperature": 0.8,
"seed": 42, # Fixed seed
"max_tokens": 50,
}
@pytest.fixture
def rejection_server():
"""Fixture to manage rejection sampling server lifecycle."""
sampling_class = "rejection"
api_port = 8288
queue_port = 8334
metrics_port = 8433
ports_to_clean = [api_port, queue_port, metrics_port]
# Setup: Clean ports and start server
clean_specific_ports(ports_to_clean)
time.sleep(2)
process = create_server_process_with_sampling(sampling_class, api_port, queue_port, metrics_port)
# Wait for server to be ready
if not wait_for_server_ready_on_port(api_port, timeout=300):
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception:
pass
pytest.fail(f"Server failed to start for {sampling_class}")
# Yield server info to test
server_info = {
"api_url": f"http://0.0.0.0:{api_port}/v1/chat/completions",
"process": process,
"sampling_class": sampling_class,
}
yield server_info
# Teardown: Clean up server
try:
os.killpg(process.pid, signal.SIGTERM)
print(f"Server terminated for {sampling_class}")
except Exception as e:
print(f"Failed to terminate server: {e}")
time.sleep(3)
@pytest.fixture
def air_server():
"""Fixture to manage AIR sampling server lifecycle."""
sampling_class = "air"
api_port = 8123
queue_port = 8534
metrics_port = 8643
ports_to_clean = [api_port, queue_port, metrics_port]
# Setup: Clean ports and start server
clean_specific_ports(ports_to_clean)
time.sleep(2)
process = create_server_process_with_sampling(sampling_class, api_port, queue_port, metrics_port)
# Wait for server to be ready with detailed error reporting
if not wait_for_server_ready_on_port(api_port, timeout=300):
# Check log file for debugging
log_file = f"server_{sampling_class}_{api_port}.log"
error_msg = f"Server failed to start for {sampling_class}"
if os.path.exists(log_file):
with open(log_file, "r") as f:
lines = f.readlines()
print(f"Server startup failed. Last 10 lines of {log_file}:")
for line in lines[-10:]:
print(f" {line.strip()}")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception:
pass
pytest.fail(error_msg)
# Yield server info to test
server_info = {
"api_url": f"http://0.0.0.0:{api_port}/v1/chat/completions",
"process": process,
"sampling_class": sampling_class,
}
yield server_info
# Teardown: Clean up server
try:
os.killpg(process.pid, signal.SIGTERM)
print(f"Server terminated for {sampling_class}")
except Exception as e:
print(f"Failed to terminate server: {e}")
time.sleep(3)
# ==========================
# Test cases
# ==========================
def test_seed_consistency_rejection_sampling(rejection_server, headers, consistent_payload):
"""
Test seed consistency for rejection sampling - multiple runs should produce identical results.
"""
server_info = rejection_server
api_url = server_info["api_url"]
sampling_class = server_info["sampling_class"]
num_runs = 5
print(f"\n===== Testing seed consistency for {sampling_class.upper()} sampling =====")
# Run multiple requests with same seed
results = []
print(f"Running {num_runs} requests with fixed seed=42:")
for i in range(num_runs):
resp = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp.status_code == 200, f"Request {i+1} failed with status {resp.status_code}"
content = resp.json()["choices"][0]["message"]["content"]
results.append(content)
print(f" Run {i+1}: {content[:50]}...")
time.sleep(1)
# Check if all results are identical
reference_result = results[0]
all_identical = all(result == reference_result for result in results)
print(f"\n--- {sampling_class.upper()} Sampling Results ---")
if all_identical:
print(f" ALL {num_runs} runs produced IDENTICAL results")
print(f" Result: {reference_result}")
else:
print(" Results are NOT identical:")
for i, result in enumerate(results):
status = "yes" if result == reference_result else "no"
print(f" Run {i+1} {status}: {result}")
# Use assertion for pytest compatibility
assert (
all_identical
), f"Rejection sampling should be consistent with fixed seed. Got {len(set(results))} different outputs: {list(set(results))}"
def test_seed_consistency_air_sampling(air_server, headers, consistent_payload):
"""
Test seed consistency for AIR sampling - multiple runs should produce identical results.
"""
server_info = air_server
api_url = server_info["api_url"]
sampling_class = server_info["sampling_class"]
num_runs = 5
print(f"\n===== Testing seed consistency for {sampling_class.upper()} sampling =====")
# Run multiple requests with same seed
results = []
print(f"Running {num_runs} requests with fixed seed=42:")
for i in range(num_runs):
resp = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp.status_code == 200, f"Request {i+1} failed with status {resp.status_code}"
content = resp.json()["choices"][0]["message"]["content"]
results.append(content)
print(f" Run {i+1}: {content[:50]}...")
time.sleep(1)
# Check if all results are identical
reference_result = results[0]
all_identical = all(result == reference_result for result in results)
print(f"\n--- {sampling_class.upper()} Sampling Results ---")
if all_identical:
print(f" ALL {num_runs} runs produced IDENTICAL results")
print(f" Result: {reference_result}")
else:
print(" Results are NOT identical:")
for i, result in enumerate(results):
status = "yes" if result == reference_result else "no"
print(f" Run {i+1} {status}: {result}")
# Use assertion for pytest compatibility
assert (
all_identical
), f"AIR sampling should be consistent with fixed seed. Got {len(set(results))} different outputs: {list(set(results))}"