[Serving] Simple serving YOLOv5 and PP-OCRv3 example, add uvicorn to fastdeploy tools (#986)

* ppocrv3 simple serving

* add uvicorn to fd tools

* update ppdet simple serving readme

* yolov5 simple serving

* not import simple serving by default

* remove config from envs

* update comment
This commit is contained in:
Wang Xinyu
2022-12-28 10:03:42 +08:00
committed by GitHub
parent 0ead9d27c2
commit aea454a856
18 changed files with 364 additions and 42 deletions

View File

@@ -17,16 +17,9 @@ cd FastDeploy/examples/vision/detection/paddledetection/python/serving
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
# 安装uvicorn
pip install uvicorn
# 启动服务可选择是否使用GPU和TensorRT可根据uvicorn --help配置IP、端口号等
# CPU
MODEL_DIR=ppyoloe_crn_l_300e_coco DEVICE=cpu uvicorn server:app
# GPU
MODEL_DIR=ppyoloe_crn_l_300e_coco DEVICE=gpu uvicorn server:app
# GPU上使用TensorRT 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
MODEL_DIR=ppyoloe_crn_l_300e_coco DEVICE=gpu USE_TRT=true uvicorn server:app
# 启动服务可修改server.py中的配置项来指定硬件、后端等
# 可通过--host、--port指定IP和端口号
fastdeploy simple_serving --app server:app
```
客户端:

View File

@@ -17,17 +17,9 @@ cd FastDeploy/examples/vision/detection/paddledetection/python/serving
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
# Install uvicorn
pip install uvicorn
# Launch server, it's configurable to use GPU and TensorRT,
# and run 'uvicorn --help' to check how to specify IP and port, etc.
# CPU
MODEL_DIR=ppyoloe_crn_l_300e_coco DEVICE=cpu uvicorn server:app
# GPU
MODEL_DIR=ppyoloe_crn_l_300e_coco DEVICE=gpu uvicorn server:app
# GPU and TensorRT
MODEL_DIR=ppyoloe_crn_l_300e_coco DEVICE=gpu USE_TRT=true uvicorn server:app
# Launch server, change the configurations in server.py to select hardware, backend, etc.
# and use --host, --port to specify IP and port
fastdeploy simple_serving --app server:app
```
Client:

View File

@@ -1,20 +1,15 @@
import requests
import json
import cv2
import base64
import fastdeploy as fd
from fastdeploy.serving.utils import cv2_to_base64
if __name__ == '__main__':
url = "http://127.0.0.1:8000/fd/ppyoloe"
headers = {"Content-Type": "application/json"}
im = cv2.imread("000000014439.jpg")
data = {
"data": {
"image": fd.serving.utils.cv2_to_base64(im)
},
"parameters": {}
}
data = {"data": {"image": cv2_to_base64(im)}, "parameters": {}}
resp = requests.post(url=url, headers=headers, data=json.dumps(data))
if resp.status_code == 200:

View File

@@ -1,18 +1,16 @@
import fastdeploy as fd
from fastdeploy.serving.server import SimpleServer
import os
import logging
logging.getLogger().setLevel(logging.INFO)
# Get arguments from envrionment variables
model_dir = os.environ.get('MODEL_DIR')
device = os.environ.get('DEVICE', 'cpu')
use_trt = os.environ.get('USE_TRT', False)
# Prepare model, download from hub or use local dir
if model_dir is None:
model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco')
# Configurations
model_dir = 'ppyoloe_crn_l_300e_coco'
device = 'cpu'
use_trt = False
# Prepare model
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
config_file = os.path.join(model_dir, "infer_cfg.yml")
@@ -33,7 +31,7 @@ model_instance = fd.vision.detection.PPYOLOE(
runtime_option=option)
# Create server, setup REST API
app = fd.serving.SimpleServer()
app = SimpleServer()
app.register(
task_name="fd/ppyoloe",
model_handler=fd.serving.handler.VisionModelHandler,

View File

@@ -0,0 +1 @@
README_CN.md

View File

@@ -0,0 +1,36 @@
简体中文 | [English](README_EN.md)
# YOLOv5 Python轻量服务化部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
服务端:
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/detection/yolov5/python/serving
# 下载模型文件
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_infer.tar
tar xvf yolov5s_infer.tar
# 启动服务可修改server.py中的配置项来指定硬件、后端等
# 可通过--host、--port指定IP和端口号
fastdeploy simple_serving --app server:app
```
客户端:
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/detection/yolov5/python/serving
# 下载测试图片
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 请求服务获取推理结果如有必要请修改脚本中的IP和端口号
python client.py
```

View File

@@ -0,0 +1,36 @@
English | [简体中文](README_CN.md)
# YOLOv5 Python Simple Serving Demo
## Environment
- 1. Prepare environment and install FastDeploy Python whl, refer to [download_prebuilt_libraries](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Server:
```bash
# Download demo code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/detection/yolov5/python/serving
# Download model
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_infer.tar
tar xvf yolov5s_infer.tar
# Launch server, change the configurations in server.py to select hardware, backend, etc.
# and use --host, --port to specify IP and port
fastdeploy simple_serving --app server:app
```
Client:
```bash
# Download demo code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/detection/yolov5/python/serving
# Download test image
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# Send request and get inference result (Please adapt the IP and port if necessary)
python client.py
```

View File

@@ -0,0 +1,23 @@
import requests
import json
import cv2
import fastdeploy as fd
from fastdeploy.serving.utils import cv2_to_base64
if __name__ == '__main__':
url = "http://127.0.0.1:8000/fd/yolov5s"
headers = {"Content-Type": "application/json"}
im = cv2.imread("000000014439.jpg")
data = {"data": {"image": cv2_to_base64(im)}, "parameters": {}}
resp = requests.post(url=url, headers=headers, data=json.dumps(data))
if resp.status_code == 200:
r_json = json.loads(resp.json()["result"])
det_result = fd.vision.utils.json_to_detection(r_json)
vis_im = fd.vision.vis_detection(im, det_result, score_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")
else:
print("Error code:", resp.status_code)
print(resp.text)

View File

@@ -0,0 +1,38 @@
import fastdeploy as fd
from fastdeploy.serving.server import SimpleServer
import os
import logging
logging.getLogger().setLevel(logging.INFO)
# Configurations
model_dir = 'yolov5s_infer'
device = 'cpu'
use_trt = False
# Prepare model
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
# Setup runtime option to select hardware, backend, etc.
option = fd.RuntimeOption()
if device.lower() == 'gpu':
option.use_gpu()
if use_trt:
option.use_trt_backend()
option.set_trt_input_shape("images", [1, 3, 640, 640])
option.set_trt_cache_file('yolov5s.trt')
# Create model instance
model_instance = fd.vision.detection.YOLOv5(
model_file,
params_file,
runtime_option=option,
model_format=fd.ModelFormat.PADDLE)
# Create server, setup REST API
app = SimpleServer()
app.register(
task_name="fd/yolov5s",
model_handler=fd.serving.handler.VisionModelHandler,
predictor=model_instance)

View File

@@ -0,0 +1 @@
README_CN.md

View File

@@ -0,0 +1,44 @@
简体中文 | [English](README_EN.md)
# PP-OCRv3 Python轻量服务化部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
服务端:
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCRv3/python/serving
# 下载模型和字典文件
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# 启动服务可修改server.py中的配置项来指定硬件、后端等
# 可通过--host、--port指定IP和端口号
fastdeploy simple_serving --app server:app
```
客户端:
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCRv3/python/serving
# 下载测试图片
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
# 请求服务获取推理结果如有必要请修改脚本中的IP和端口号
python client.py
```

View File

@@ -0,0 +1,43 @@
English | [简体中文](README_CN.md)
# PP-OCRv3 Python Simple Serving Demo
## Environment
- 1. Prepare environment and install FastDeploy Python whl, refer to [download_prebuilt_libraries](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Server:
```bash
# Download demo code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCRv3/python/serving
# Download models and labels
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# Launch server, change the configurations in server.py to select hardware, backend, etc.
# and use --host, --port to specify IP and port
fastdeploy simple_serving --app server:app
```
Client:
```bash
# Download demo code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCRv3/python/serving
# Download test image
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
# Send request and get inference result (Please adapt the IP and port if necessary)
python client.py
```

View File

@@ -0,0 +1,24 @@
import requests
import json
import cv2
import fastdeploy as fd
from fastdeploy.serving.utils import cv2_to_base64
if __name__ == '__main__':
url = "http://127.0.0.1:8000/fd/ppocrv3"
headers = {"Content-Type": "application/json"}
im = cv2.imread("12.jpg")
data = {"data": {"image": cv2_to_base64(im)}, "parameters": {}}
resp = requests.post(url=url, headers=headers, data=json.dumps(data))
if resp.status_code == 200:
r_json = json.loads(resp.json()["result"])
print(r_json)
ocr_result = fd.vision.utils.json_to_ocr(r_json)
vis_im = fd.vision.vis_ppocr(im, ocr_result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")
else:
print("Error code:", resp.status_code)
print(resp.text)

View File

@@ -0,0 +1,80 @@
import fastdeploy as fd
from fastdeploy.serving.server import SimpleServer
import os
import logging
logging.getLogger().setLevel(logging.INFO)
# Configurations
det_model_dir = 'ch_PP-OCRv3_det_infer'
cls_model_dir = 'ch_ppocr_mobile_v2.0_cls_infer'
rec_model_dir = 'ch_PP-OCRv3_rec_infer'
rec_label_file = 'ppocr_keys_v1.txt'
device = 'cpu'
# backend: ['paddle', 'trt'], you can also use other backends, but need to modify
# the runtime option below
backend = 'paddle'
# Prepare models
# Detection model
det_model_file = os.path.join(det_model_dir, "inference.pdmodel")
det_params_file = os.path.join(det_model_dir, "inference.pdiparams")
# Classification model
cls_model_file = os.path.join(cls_model_dir, "inference.pdmodel")
cls_params_file = os.path.join(cls_model_dir, "inference.pdiparams")
# Recognition model
rec_model_file = os.path.join(rec_model_dir, "inference.pdmodel")
rec_params_file = os.path.join(rec_model_dir, "inference.pdiparams")
# Setup runtime option to select hardware, backend, etc.
option = fd.RuntimeOption()
if device.lower() == 'gpu':
option.use_gpu()
if backend == 'trt':
option.use_trt_backend()
else:
option.use_paddle_infer_backend()
det_option = option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
# det_option.set_trt_cache_file("det_trt_cache.trt")
print(det_model_file, det_params_file)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_batch_size = 1
rec_batch_size = 6
cls_option = option
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[cls_batch_size, 3, 48, 320],
[cls_batch_size, 3, 48, 1024])
# cls_option.set_trt_cache_file("cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = option
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[rec_batch_size, 3, 48, 320],
[rec_batch_size, 3, 48, 2304])
# rec_option.set_trt_cache_file("rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# Create PPOCRv3 pipeline
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
ppocr_v3.cls_batch_size = cls_batch_size
ppocr_v3.rec_batch_size = rec_batch_size
# Create server, setup REST API
app = SimpleServer()
app.register(
task_name="fd/ppocrv3",
model_handler=fd.serving.handler.VisionModelHandler,
predictor=ppocr_v3)

View File

@@ -12,5 +12,3 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from .server import SimpleServer

View File

@@ -3,6 +3,6 @@ requests
tqdm
numpy
opencv-python
fastdeploy-tools==0.0.1
fastdeploy-tools>=0.0.1
pyyaml
fastapi

View File

@@ -1,10 +1,12 @@
import argparse
import ast
import uvicorn
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('tools', choices=['compress', 'convert'])
parser.add_argument(
'tools', choices=['compress', 'convert', 'simple_serving'])
## argumentments for auto compression
parser.add_argument(
'--config_path',
@@ -69,6 +71,19 @@ def argsparser():
type=ast.literal_eval,
default=False,
help="Turn on code optimization")
## arguments for simple serving
parser.add_argument(
"--app",
type=str,
default="server:app",
help="Simple serving app string")
parser.add_argument(
"--host",
type=str,
default="127.0.0.1",
help="Simple serving host IP address")
parser.add_argument(
"--port", type=int, default=8000, help="Simple serving host port")
## arguments for other tools
return parser
@@ -116,6 +131,8 @@ def main():
except ImportError:
print(
"Model convert failed! Please check if you have installed it!")
if args.tools == "simple_serving":
uvicorn.run(args.app, host=args.host, port=args.port, app_dir='.')
if __name__ == '__main__':

View File

@@ -3,13 +3,16 @@ import setuptools
long_description = "fastdeploy-tools is a toolkit for FastDeploy, including auto compression .etc.\n\n"
long_description += "Usage of auto compression: fastdeploy compress --config_path=./yolov7_tiny_qat_dis.yaml --method='QAT' --save_dir='./v7_qat_outmodel/' \n"
install_requires = ['uvicorn==0.16.0']
setuptools.setup(
name="fastdeploy-tools", # name of package
version="0.0.1", #version of package
version="0.0.2", #version of package
description="A toolkit for FastDeploy.",
long_description=long_description,
long_description_content_type="text/plain",
packages=setuptools.find_packages(),
install_requires=install_requires,
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: Apache Software License",