mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Serving] Simple serving YOLOv5 and PP-OCRv3 example, add uvicorn to fastdeploy tools (#986)
* ppocrv3 simple serving * add uvicorn to fd tools * update ppdet simple serving readme * yolov5 simple serving * not import simple serving by default * remove config from envs * update comment
This commit is contained in:
80
examples/vision/ocr/PP-OCRv3/python/serving/server.py
Normal file
80
examples/vision/ocr/PP-OCRv3/python/serving/server.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import fastdeploy as fd
|
||||
from fastdeploy.serving.server import SimpleServer
|
||||
import os
|
||||
import logging
|
||||
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
# Configurations
|
||||
det_model_dir = 'ch_PP-OCRv3_det_infer'
|
||||
cls_model_dir = 'ch_ppocr_mobile_v2.0_cls_infer'
|
||||
rec_model_dir = 'ch_PP-OCRv3_rec_infer'
|
||||
rec_label_file = 'ppocr_keys_v1.txt'
|
||||
device = 'cpu'
|
||||
# backend: ['paddle', 'trt'], you can also use other backends, but need to modify
|
||||
# the runtime option below
|
||||
backend = 'paddle'
|
||||
|
||||
# Prepare models
|
||||
# Detection model
|
||||
det_model_file = os.path.join(det_model_dir, "inference.pdmodel")
|
||||
det_params_file = os.path.join(det_model_dir, "inference.pdiparams")
|
||||
# Classification model
|
||||
cls_model_file = os.path.join(cls_model_dir, "inference.pdmodel")
|
||||
cls_params_file = os.path.join(cls_model_dir, "inference.pdiparams")
|
||||
# Recognition model
|
||||
rec_model_file = os.path.join(rec_model_dir, "inference.pdmodel")
|
||||
rec_params_file = os.path.join(rec_model_dir, "inference.pdiparams")
|
||||
|
||||
# Setup runtime option to select hardware, backend, etc.
|
||||
option = fd.RuntimeOption()
|
||||
if device.lower() == 'gpu':
|
||||
option.use_gpu()
|
||||
if backend == 'trt':
|
||||
option.use_trt_backend()
|
||||
else:
|
||||
option.use_paddle_infer_backend()
|
||||
|
||||
det_option = option
|
||||
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
|
||||
[1, 3, 960, 960])
|
||||
|
||||
# det_option.set_trt_cache_file("det_trt_cache.trt")
|
||||
print(det_model_file, det_params_file)
|
||||
det_model = fd.vision.ocr.DBDetector(
|
||||
det_model_file, det_params_file, runtime_option=det_option)
|
||||
|
||||
cls_batch_size = 1
|
||||
rec_batch_size = 6
|
||||
|
||||
cls_option = option
|
||||
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||||
[cls_batch_size, 3, 48, 320],
|
||||
[cls_batch_size, 3, 48, 1024])
|
||||
|
||||
# cls_option.set_trt_cache_file("cls_trt_cache.trt")
|
||||
cls_model = fd.vision.ocr.Classifier(
|
||||
cls_model_file, cls_params_file, runtime_option=cls_option)
|
||||
|
||||
rec_option = option
|
||||
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||||
[rec_batch_size, 3, 48, 320],
|
||||
[rec_batch_size, 3, 48, 2304])
|
||||
|
||||
# rec_option.set_trt_cache_file("rec_trt_cache.trt")
|
||||
rec_model = fd.vision.ocr.Recognizer(
|
||||
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
|
||||
|
||||
# Create PPOCRv3 pipeline
|
||||
ppocr_v3 = fd.vision.ocr.PPOCRv3(
|
||||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||||
|
||||
ppocr_v3.cls_batch_size = cls_batch_size
|
||||
ppocr_v3.rec_batch_size = rec_batch_size
|
||||
|
||||
# Create server, setup REST API
|
||||
app = SimpleServer()
|
||||
app.register(
|
||||
task_name="fd/ppocrv3",
|
||||
model_handler=fd.serving.handler.VisionModelHandler,
|
||||
predictor=ppocr_v3)
|
Reference in New Issue
Block a user