[Serving] Simple serving YOLOv5 and PP-OCRv3 example, add uvicorn to fastdeploy tools (#986)

* ppocrv3 simple serving

* add uvicorn to fd tools

* update ppdet simple serving readme

* yolov5 simple serving

* not import simple serving by default

* remove config from envs

* update comment
This commit is contained in:
Wang Xinyu
2022-12-28 10:03:42 +08:00
committed by GitHub
parent 0ead9d27c2
commit aea454a856
18 changed files with 364 additions and 42 deletions

View File

@@ -0,0 +1 @@
README_CN.md

View File

@@ -0,0 +1,44 @@
简体中文 | [English](README_EN.md)
# PP-OCRv3 Python轻量服务化部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
服务端:
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCRv3/python/serving
# 下载模型和字典文件
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# 启动服务可修改server.py中的配置项来指定硬件、后端等
# 可通过--host、--port指定IP和端口号
fastdeploy simple_serving --app server:app
```
客户端:
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCRv3/python/serving
# 下载测试图片
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
# 请求服务获取推理结果如有必要请修改脚本中的IP和端口号
python client.py
```

View File

@@ -0,0 +1,43 @@
English | [简体中文](README_CN.md)
# PP-OCRv3 Python Simple Serving Demo
## Environment
- 1. Prepare environment and install FastDeploy Python whl, refer to [download_prebuilt_libraries](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Server:
```bash
# Download demo code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCRv3/python/serving
# Download models and labels
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# Launch server, change the configurations in server.py to select hardware, backend, etc.
# and use --host, --port to specify IP and port
fastdeploy simple_serving --app server:app
```
Client:
```bash
# Download demo code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCRv3/python/serving
# Download test image
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
# Send request and get inference result (Please adapt the IP and port if necessary)
python client.py
```

View File

@@ -0,0 +1,24 @@
import requests
import json
import cv2
import fastdeploy as fd
from fastdeploy.serving.utils import cv2_to_base64
if __name__ == '__main__':
url = "http://127.0.0.1:8000/fd/ppocrv3"
headers = {"Content-Type": "application/json"}
im = cv2.imread("12.jpg")
data = {"data": {"image": cv2_to_base64(im)}, "parameters": {}}
resp = requests.post(url=url, headers=headers, data=json.dumps(data))
if resp.status_code == 200:
r_json = json.loads(resp.json()["result"])
print(r_json)
ocr_result = fd.vision.utils.json_to_ocr(r_json)
vis_im = fd.vision.vis_ppocr(im, ocr_result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")
else:
print("Error code:", resp.status_code)
print(resp.text)

View File

@@ -0,0 +1,80 @@
import fastdeploy as fd
from fastdeploy.serving.server import SimpleServer
import os
import logging
logging.getLogger().setLevel(logging.INFO)
# Configurations
det_model_dir = 'ch_PP-OCRv3_det_infer'
cls_model_dir = 'ch_ppocr_mobile_v2.0_cls_infer'
rec_model_dir = 'ch_PP-OCRv3_rec_infer'
rec_label_file = 'ppocr_keys_v1.txt'
device = 'cpu'
# backend: ['paddle', 'trt'], you can also use other backends, but need to modify
# the runtime option below
backend = 'paddle'
# Prepare models
# Detection model
det_model_file = os.path.join(det_model_dir, "inference.pdmodel")
det_params_file = os.path.join(det_model_dir, "inference.pdiparams")
# Classification model
cls_model_file = os.path.join(cls_model_dir, "inference.pdmodel")
cls_params_file = os.path.join(cls_model_dir, "inference.pdiparams")
# Recognition model
rec_model_file = os.path.join(rec_model_dir, "inference.pdmodel")
rec_params_file = os.path.join(rec_model_dir, "inference.pdiparams")
# Setup runtime option to select hardware, backend, etc.
option = fd.RuntimeOption()
if device.lower() == 'gpu':
option.use_gpu()
if backend == 'trt':
option.use_trt_backend()
else:
option.use_paddle_infer_backend()
det_option = option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
# det_option.set_trt_cache_file("det_trt_cache.trt")
print(det_model_file, det_params_file)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_batch_size = 1
rec_batch_size = 6
cls_option = option
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[cls_batch_size, 3, 48, 320],
[cls_batch_size, 3, 48, 1024])
# cls_option.set_trt_cache_file("cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = option
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[rec_batch_size, 3, 48, 320],
[rec_batch_size, 3, 48, 2304])
# rec_option.set_trt_cache_file("rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# Create PPOCRv3 pipeline
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
ppocr_v3.cls_batch_size = cls_batch_size
ppocr_v3.rec_batch_size = rec_batch_size
# Create server, setup REST API
app = SimpleServer()
app.register(
task_name="fd/ppocrv3",
model_handler=fd.serving.handler.VisionModelHandler,
predictor=ppocr_v3)