mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Serving] Simple serving YOLOv5 and PP-OCRv3 example, add uvicorn to fastdeploy tools (#986)
* ppocrv3 simple serving * add uvicorn to fd tools * update ppdet simple serving readme * yolov5 simple serving * not import simple serving by default * remove config from envs * update comment
This commit is contained in:
1
examples/vision/detection/yolov5/python/serving/README.md
Symbolic link
1
examples/vision/detection/yolov5/python/serving/README.md
Symbolic link
@@ -0,0 +1 @@
|
||||
README_CN.md
|
36
examples/vision/detection/yolov5/python/serving/README_CN.md
Normal file
36
examples/vision/detection/yolov5/python/serving/README_CN.md
Normal file
@@ -0,0 +1,36 @@
|
||||
简体中文 | [English](README_EN.md)
|
||||
|
||||
# YOLOv5 Python轻量服务化部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
服务端:
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/detection/yolov5/python/serving
|
||||
|
||||
# 下载模型文件
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_infer.tar
|
||||
tar xvf yolov5s_infer.tar
|
||||
|
||||
# 启动服务,可修改server.py中的配置项来指定硬件、后端等
|
||||
# 可通过--host、--port指定IP和端口号
|
||||
fastdeploy simple_serving --app server:app
|
||||
```
|
||||
|
||||
客户端:
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/detection/yolov5/python/serving
|
||||
|
||||
# 下载测试图片
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# 请求服务,获取推理结果(如有必要,请修改脚本中的IP和端口号)
|
||||
python client.py
|
||||
```
|
36
examples/vision/detection/yolov5/python/serving/README_EN.md
Normal file
36
examples/vision/detection/yolov5/python/serving/README_EN.md
Normal file
@@ -0,0 +1,36 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
|
||||
# YOLOv5 Python Simple Serving Demo
|
||||
|
||||
|
||||
## Environment
|
||||
|
||||
- 1. Prepare environment and install FastDeploy Python whl, refer to [download_prebuilt_libraries](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
Server:
|
||||
```bash
|
||||
# Download demo code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/detection/yolov5/python/serving
|
||||
|
||||
# Download model
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_infer.tar
|
||||
tar xvf yolov5s_infer.tar
|
||||
|
||||
# Launch server, change the configurations in server.py to select hardware, backend, etc.
|
||||
# and use --host, --port to specify IP and port
|
||||
fastdeploy simple_serving --app server:app
|
||||
```
|
||||
|
||||
Client:
|
||||
```bash
|
||||
# Download demo code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/detection/yolov5/python/serving
|
||||
|
||||
# Download test image
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# Send request and get inference result (Please adapt the IP and port if necessary)
|
||||
python client.py
|
||||
```
|
23
examples/vision/detection/yolov5/python/serving/client.py
Normal file
23
examples/vision/detection/yolov5/python/serving/client.py
Normal file
@@ -0,0 +1,23 @@
|
||||
import requests
|
||||
import json
|
||||
import cv2
|
||||
import fastdeploy as fd
|
||||
from fastdeploy.serving.utils import cv2_to_base64
|
||||
|
||||
if __name__ == '__main__':
|
||||
url = "http://127.0.0.1:8000/fd/yolov5s"
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
im = cv2.imread("000000014439.jpg")
|
||||
data = {"data": {"image": cv2_to_base64(im)}, "parameters": {}}
|
||||
|
||||
resp = requests.post(url=url, headers=headers, data=json.dumps(data))
|
||||
if resp.status_code == 200:
|
||||
r_json = json.loads(resp.json()["result"])
|
||||
det_result = fd.vision.utils.json_to_detection(r_json)
|
||||
vis_im = fd.vision.vis_detection(im, det_result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
||||
else:
|
||||
print("Error code:", resp.status_code)
|
||||
print(resp.text)
|
38
examples/vision/detection/yolov5/python/serving/server.py
Normal file
38
examples/vision/detection/yolov5/python/serving/server.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import fastdeploy as fd
|
||||
from fastdeploy.serving.server import SimpleServer
|
||||
import os
|
||||
import logging
|
||||
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
# Configurations
|
||||
model_dir = 'yolov5s_infer'
|
||||
device = 'cpu'
|
||||
use_trt = False
|
||||
|
||||
# Prepare model
|
||||
model_file = os.path.join(model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(model_dir, "model.pdiparams")
|
||||
|
||||
# Setup runtime option to select hardware, backend, etc.
|
||||
option = fd.RuntimeOption()
|
||||
if device.lower() == 'gpu':
|
||||
option.use_gpu()
|
||||
if use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("images", [1, 3, 640, 640])
|
||||
option.set_trt_cache_file('yolov5s.trt')
|
||||
|
||||
# Create model instance
|
||||
model_instance = fd.vision.detection.YOLOv5(
|
||||
model_file,
|
||||
params_file,
|
||||
runtime_option=option,
|
||||
model_format=fd.ModelFormat.PADDLE)
|
||||
|
||||
# Create server, setup REST API
|
||||
app = SimpleServer()
|
||||
app.register(
|
||||
task_name="fd/yolov5s",
|
||||
model_handler=fd.serving.handler.VisionModelHandler,
|
||||
predictor=model_instance)
|
Reference in New Issue
Block a user