mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Other]Update python && cpp multi_thread examples (#876)
* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug * Update python && cpp multi_thread examples * Add cpp && python directory * Add README.md for examples * Delete redundant code Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -37,6 +37,21 @@ void BindVision(pybind11::module& m) {
|
|||||||
.def(pybind11::init())
|
.def(pybind11::init())
|
||||||
.def_readwrite("data", &vision::Mask::data)
|
.def_readwrite("data", &vision::Mask::data)
|
||||||
.def_readwrite("shape", &vision::Mask::shape)
|
.def_readwrite("shape", &vision::Mask::shape)
|
||||||
|
.def(pybind11::pickle(
|
||||||
|
[](const vision::Mask &m) {
|
||||||
|
return pybind11::make_tuple(m.data, m.shape);
|
||||||
|
},
|
||||||
|
[](pybind11::tuple t) {
|
||||||
|
if (t.size() != 2)
|
||||||
|
throw std::runtime_error("vision::Mask pickle with invalid state!");
|
||||||
|
|
||||||
|
vision::Mask m;
|
||||||
|
m.data = t[0].cast<std::vector<int32_t>>();
|
||||||
|
m.shape = t[1].cast<std::vector<int64_t>>();
|
||||||
|
|
||||||
|
return m;
|
||||||
|
}
|
||||||
|
))
|
||||||
.def("__repr__", &vision::Mask::Str)
|
.def("__repr__", &vision::Mask::Str)
|
||||||
.def("__str__", &vision::Mask::Str);
|
.def("__str__", &vision::Mask::Str);
|
||||||
|
|
||||||
@@ -44,6 +59,21 @@ void BindVision(pybind11::module& m) {
|
|||||||
.def(pybind11::init())
|
.def(pybind11::init())
|
||||||
.def_readwrite("label_ids", &vision::ClassifyResult::label_ids)
|
.def_readwrite("label_ids", &vision::ClassifyResult::label_ids)
|
||||||
.def_readwrite("scores", &vision::ClassifyResult::scores)
|
.def_readwrite("scores", &vision::ClassifyResult::scores)
|
||||||
|
.def(pybind11::pickle(
|
||||||
|
[](const vision::ClassifyResult &c) {
|
||||||
|
return pybind11::make_tuple(c.label_ids, c.scores);
|
||||||
|
},
|
||||||
|
[](pybind11::tuple t) {
|
||||||
|
if (t.size() != 2)
|
||||||
|
throw std::runtime_error("vision::ClassifyResult pickle with invalid state!");
|
||||||
|
|
||||||
|
vision::ClassifyResult c;
|
||||||
|
c.label_ids = t[0].cast<std::vector<int32_t>>();
|
||||||
|
c.scores = t[1].cast<std::vector<float>>();
|
||||||
|
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
))
|
||||||
.def("__repr__", &vision::ClassifyResult::Str)
|
.def("__repr__", &vision::ClassifyResult::Str)
|
||||||
.def("__str__", &vision::ClassifyResult::Str);
|
.def("__str__", &vision::ClassifyResult::Str);
|
||||||
|
|
||||||
@@ -54,6 +84,24 @@ void BindVision(pybind11::module& m) {
|
|||||||
.def_readwrite("label_ids", &vision::DetectionResult::label_ids)
|
.def_readwrite("label_ids", &vision::DetectionResult::label_ids)
|
||||||
.def_readwrite("masks", &vision::DetectionResult::masks)
|
.def_readwrite("masks", &vision::DetectionResult::masks)
|
||||||
.def_readwrite("contain_masks", &vision::DetectionResult::contain_masks)
|
.def_readwrite("contain_masks", &vision::DetectionResult::contain_masks)
|
||||||
|
.def(pybind11::pickle(
|
||||||
|
[](const vision::DetectionResult &d) {
|
||||||
|
return pybind11::make_tuple(d.boxes, d.scores, d.label_ids, d.masks, d.contain_masks);
|
||||||
|
},
|
||||||
|
[](pybind11::tuple t) {
|
||||||
|
if (t.size() != 5)
|
||||||
|
throw std::runtime_error("vision::DetectionResult pickle with Invalid state!");
|
||||||
|
|
||||||
|
vision::DetectionResult d;
|
||||||
|
d.boxes = t[0].cast<std::vector<std::array<float, 4>>>();
|
||||||
|
d.scores = t[1].cast<std::vector<float>>();
|
||||||
|
d.label_ids = t[2].cast<std::vector<int32_t>>();
|
||||||
|
d.masks = t[3].cast<std::vector<vision::Mask>>();
|
||||||
|
d.contain_masks = t[4].cast<bool>();
|
||||||
|
|
||||||
|
return d;
|
||||||
|
}
|
||||||
|
))
|
||||||
.def("__repr__", &vision::DetectionResult::Str)
|
.def("__repr__", &vision::DetectionResult::Str)
|
||||||
.def("__str__", &vision::DetectionResult::Str);
|
.def("__str__", &vision::DetectionResult::Str);
|
||||||
|
|
||||||
@@ -104,6 +152,23 @@ void BindVision(pybind11::module& m) {
|
|||||||
.def_readwrite("score_map", &vision::SegmentationResult::score_map)
|
.def_readwrite("score_map", &vision::SegmentationResult::score_map)
|
||||||
.def_readwrite("shape", &vision::SegmentationResult::shape)
|
.def_readwrite("shape", &vision::SegmentationResult::shape)
|
||||||
.def_readwrite("contain_score_map", &vision::SegmentationResult::contain_score_map)
|
.def_readwrite("contain_score_map", &vision::SegmentationResult::contain_score_map)
|
||||||
|
.def(pybind11::pickle(
|
||||||
|
[](const vision::SegmentationResult &s) {
|
||||||
|
return pybind11::make_tuple(s.label_map, s.score_map, s.shape, s.contain_score_map);
|
||||||
|
},
|
||||||
|
[](pybind11::tuple t) {
|
||||||
|
if (t.size() != 4)
|
||||||
|
throw std::runtime_error("vision::SegmentationResult pickle with Invalid state!");
|
||||||
|
|
||||||
|
vision::SegmentationResult s;
|
||||||
|
s.label_map = t[0].cast<std::vector<uint8_t>>();
|
||||||
|
s.score_map = t[1].cast<std::vector<float>>();
|
||||||
|
s.shape = t[2].cast<std::vector<int64_t>>();
|
||||||
|
s.contain_score_map = t[3].cast<bool>();
|
||||||
|
|
||||||
|
return s;
|
||||||
|
}
|
||||||
|
))
|
||||||
.def("__repr__", &vision::SegmentationResult::Str)
|
.def("__repr__", &vision::SegmentationResult::Str)
|
||||||
.def("__str__", &vision::SegmentationResult::Str);
|
.def("__str__", &vision::SegmentationResult::Str);
|
||||||
|
|
||||||
|
14
tutorials/multi_thread/cpp/CMakeLists.txt
Normal file
14
tutorials/multi_thread/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
PROJECT(multi_thread_demo C CXX)
|
||||||
|
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||||
|
|
||||||
|
# 指定下载解压后的fastdeploy库路径
|
||||||
|
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||||
|
|
||||||
|
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||||
|
|
||||||
|
# 添加FastDeploy依赖头文件
|
||||||
|
include_directories(${FASTDEPLOY_INCS})
|
||||||
|
|
||||||
|
add_executable(multi_thread_demo ${PROJECT_SOURCE_DIR}/multi_thread.cc)
|
||||||
|
# 添加FastDeploy库依赖
|
||||||
|
target_link_libraries(multi_thread_demo ${FASTDEPLOY_LIBS} pthread)
|
79
tutorials/multi_thread/cpp/README.md
Normal file
79
tutorials/multi_thread/cpp/README.md
Normal file
@@ -0,0 +1,79 @@
|
|||||||
|
# PaddleClas C++部署示例
|
||||||
|
|
||||||
|
本目录下提供`infer.cc`快速完成PaddleClas系列模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||||
|
|
||||||
|
在部署前,需确认以下两个步骤
|
||||||
|
|
||||||
|
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||||
|
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||||
|
|
||||||
|
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||||
|
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||||
|
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||||
|
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||||
|
make -j
|
||||||
|
|
||||||
|
# 下载ResNet50_vd模型文件和测试图片
|
||||||
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||||
|
tar -xvf ResNet50_vd_infer.tgz
|
||||||
|
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||||
|
|
||||||
|
|
||||||
|
# CPU推理
|
||||||
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
|
||||||
|
# GPU推理
|
||||||
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
|
||||||
|
# GPU上TensorRT推理
|
||||||
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
|
||||||
|
```
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||||
|
|
||||||
|
## PaddleClas C++接口
|
||||||
|
|
||||||
|
### PaddleClas类
|
||||||
|
|
||||||
|
```c++
|
||||||
|
fastdeploy::vision::classification::PaddleClasModel(
|
||||||
|
const string& model_file,
|
||||||
|
const string& params_file,
|
||||||
|
const string& config_file,
|
||||||
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||||
|
```
|
||||||
|
|
||||||
|
PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
|
||||||
|
|
||||||
|
**参数**
|
||||||
|
|
||||||
|
> * **model_file**(str): 模型文件路径
|
||||||
|
> * **params_file**(str): 参数文件路径
|
||||||
|
> * **config_file**(str): 推理部署配置文件
|
||||||
|
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||||
|
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||||
|
|
||||||
|
#### Predict函数
|
||||||
|
|
||||||
|
> ```c++
|
||||||
|
> PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
|
||||||
|
> ```
|
||||||
|
>
|
||||||
|
> 模型预测接口,输入图像直接输出检测结果。
|
||||||
|
>
|
||||||
|
> **参数**
|
||||||
|
>
|
||||||
|
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||||
|
> > * **result**: 分类结果,包括label_id,以及相应的置信度, ClassifyResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||||
|
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
|
||||||
|
|
||||||
|
|
||||||
|
- [模型介绍](../../)
|
||||||
|
- [Python部署](../python)
|
||||||
|
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||||
|
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
@@ -6,21 +6,44 @@ const char sep = '\\';
|
|||||||
const char sep = '/';
|
const char sep = '/';
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
void predict(fastdeploy::vision::classification::PaddleClasModel *model, int thread_id, const std::string& image_file) {
|
void Predict(fastdeploy::vision::classification::PaddleClasModel *model, int thread_id, const std::vector<std::string>& images) {
|
||||||
auto im = cv::imread(image_file);
|
for (auto const &image_file : images) {
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
|
||||||
fastdeploy::vision::ClassifyResult res;
|
fastdeploy::vision::ClassifyResult res;
|
||||||
if (!model->Predict(im, &res)) {
|
if (!model->Predict(im, &res)) {
|
||||||
std::cerr << "Failed to predict." << std::endl;
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
return;
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// print res
|
||||||
|
std::cout << "Thread Id: " << thread_id << std::endl;
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
// print res
|
|
||||||
std::cout << "Thread Id: " << thread_id << std::endl;
|
|
||||||
std::cout << res.Str() << std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void CpuInfer(const std::string& model_dir, const std::string& image_file, int thread_num) {
|
void GetImageList(std::vector<std::vector<std::string>>* image_list, const std::string& image_file_path, int thread_num){
|
||||||
|
std::vector<cv::String> images;
|
||||||
|
cv::glob(image_file_path, images, false);
|
||||||
|
// number of image files in images folder
|
||||||
|
size_t count = images.size();
|
||||||
|
size_t num = count / thread_num;
|
||||||
|
for (int i = 0; i < thread_num; i++) {
|
||||||
|
std::vector<std::string> temp_list;
|
||||||
|
if (i == thread_num - 1) {
|
||||||
|
for (size_t j = i*num; j < count; j++){
|
||||||
|
temp_list.push_back(images[j]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (size_t j = 0; j < num; j++){
|
||||||
|
temp_list.push_back(images[i * num + j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
(*image_list)[i] = temp_list;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void CpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||||
@@ -39,9 +62,12 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file, int t
|
|||||||
models.emplace_back(std::move(model.Clone()));
|
models.emplace_back(std::move(model.Clone()));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||||
|
GetImageList(&image_list, image_file_path, thread_num);
|
||||||
|
|
||||||
std::vector<std::thread> threads;
|
std::vector<std::thread> threads;
|
||||||
for (int i = 0; i < thread_num; ++i) {
|
for (int i = 0; i < thread_num; ++i) {
|
||||||
threads.emplace_back(predict, models[i].get(), i, image_file);
|
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < thread_num; ++i) {
|
for (int i = 0; i < thread_num; ++i) {
|
||||||
@@ -49,7 +75,7 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file, int t
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void GpuInfer(const std::string& model_dir, const std::string& image_file, int thread_num) {
|
void GpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||||
@@ -68,9 +94,12 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file, int t
|
|||||||
models.emplace_back(std::move(model.Clone()));
|
models.emplace_back(std::move(model.Clone()));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||||
|
GetImageList(&image_list, image_file_path, thread_num);
|
||||||
|
|
||||||
std::vector<std::thread> threads;
|
std::vector<std::thread> threads;
|
||||||
for (int i = 0; i < thread_num; ++i) {
|
for (int i = 0; i < thread_num; ++i) {
|
||||||
threads.emplace_back(predict, models[i].get(), i, image_file);
|
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < thread_num; ++i) {
|
for (int i = 0; i < thread_num; ++i) {
|
||||||
@@ -78,7 +107,7 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file, int t
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void TrtInfer(const std::string& model_dir, const std::string& image_file, int thread_num) {
|
void TrtInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||||
@@ -99,9 +128,12 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file, int t
|
|||||||
models.emplace_back(std::move(model.Clone()));
|
models.emplace_back(std::move(model.Clone()));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||||
|
GetImageList(&image_list, image_file_path, thread_num);
|
||||||
|
|
||||||
std::vector<std::thread> threads;
|
std::vector<std::thread> threads;
|
||||||
for (int i = 0; i < thread_num; ++i) {
|
for (int i = 0; i < thread_num; ++i) {
|
||||||
threads.emplace_back(predict, models[i].get(), i, image_file);
|
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < thread_num; ++i) {
|
for (int i = 0; i < thread_num; ++i) {
|
||||||
@@ -112,7 +144,7 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file, int t
|
|||||||
int main(int argc, char **argv) {
|
int main(int argc, char **argv) {
|
||||||
if (argc < 5) {
|
if (argc < 5) {
|
||||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option thread_num, "
|
std::cout << "Usage: infer_demo path/to/model path/to/image run_option thread_num, "
|
||||||
"e.g ./infer_demo ./ResNet50_vd ./test.jpeg 0 3"
|
"e.g ./multi_thread_demo ./ResNet50_vd ./test.jpeg 0 3"
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
77
tutorials/multi_thread/python/README.md
Normal file
77
tutorials/multi_thread/python/README.md
Normal file
@@ -0,0 +1,77 @@
|
|||||||
|
# PaddleClas模型 Python部署示例
|
||||||
|
|
||||||
|
在部署前,需确认以下两个步骤
|
||||||
|
|
||||||
|
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||||
|
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||||
|
|
||||||
|
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
|
```bash
|
||||||
|
#下载部署示例代码
|
||||||
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
|
cd FastDeploy/examples/vision/classification/paddleclas/python
|
||||||
|
|
||||||
|
# 下载ResNet50_vd模型文件和测试图片
|
||||||
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||||
|
tar -xvf ResNet50_vd_infer.tgz
|
||||||
|
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||||
|
|
||||||
|
# CPU推理
|
||||||
|
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
|
||||||
|
# GPU推理
|
||||||
|
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
|
||||||
|
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||||
|
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
|
||||||
|
# IPU推理(注意:IPU推理首次运行会有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||||
|
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device ipu --topk 1
|
||||||
|
```
|
||||||
|
|
||||||
|
运行完成后返回结果如下所示
|
||||||
|
```bash
|
||||||
|
ClassifyResult(
|
||||||
|
label_ids: 153,
|
||||||
|
scores: 0.686229,
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## PaddleClasModel Python接口
|
||||||
|
|
||||||
|
```python
|
||||||
|
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||||
|
```
|
||||||
|
|
||||||
|
PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
|
||||||
|
|
||||||
|
**参数**
|
||||||
|
|
||||||
|
> * **model_file**(str): 模型文件路径
|
||||||
|
> * **params_file**(str): 参数文件路径
|
||||||
|
> * **config_file**(str): 推理部署配置文件
|
||||||
|
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||||
|
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||||
|
|
||||||
|
### predict函数
|
||||||
|
|
||||||
|
> ```python
|
||||||
|
> PaddleClasModel.predict(input_image, topk=1)
|
||||||
|
> ```
|
||||||
|
>
|
||||||
|
> 模型预测结口,输入图像直接输出分类topk结果。
|
||||||
|
>
|
||||||
|
> **参数**
|
||||||
|
>
|
||||||
|
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||||
|
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
|
||||||
|
|
||||||
|
> **返回**
|
||||||
|
>
|
||||||
|
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||||
|
|
||||||
|
|
||||||
|
## 其它文档
|
||||||
|
|
||||||
|
- [PaddleClas 模型介绍](..)
|
||||||
|
- [PaddleClas C++部署](../cpp)
|
||||||
|
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||||||
|
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
@@ -4,6 +4,7 @@ import fastdeploy as fd
|
|||||||
import cv2
|
import cv2
|
||||||
import os
|
import os
|
||||||
import psutil
|
import psutil
|
||||||
|
from multiprocessing import Pool
|
||||||
|
|
||||||
|
|
||||||
def parse_arguments():
|
def parse_arguments():
|
||||||
@@ -31,6 +32,13 @@ def parse_arguments():
|
|||||||
default=False,
|
default=False,
|
||||||
help="Wether to use tensorrt.")
|
help="Wether to use tensorrt.")
|
||||||
parser.add_argument("--thread_num", type=int, default=1, help="thread num")
|
parser.add_argument("--thread_num", type=int, default=1, help="thread num")
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_multi_process",
|
||||||
|
type=ast.literal_eval,
|
||||||
|
default=False,
|
||||||
|
help="Wether to use multi process.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--process_num", type=int, default=1, help="process num")
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
@@ -71,7 +79,7 @@ def build_option(args):
|
|||||||
|
|
||||||
def predict(model, img_list, topk):
|
def predict(model, img_list, topk):
|
||||||
result_list = []
|
result_list = []
|
||||||
# 预测图片分类结果
|
# predict classification result
|
||||||
for image in img_list:
|
for image in img_list:
|
||||||
im = cv2.imread(image)
|
im = cv2.imread(image)
|
||||||
result = model.predict(im, topk)
|
result = model.predict(im, topk)
|
||||||
@@ -79,6 +87,13 @@ def predict(model, img_list, topk):
|
|||||||
return result_list
|
return result_list
|
||||||
|
|
||||||
|
|
||||||
|
def process_predict(image):
|
||||||
|
# predict classification result
|
||||||
|
im = cv2.imread(image)
|
||||||
|
result = model.predict(im, args.topk)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
class WrapperThread(Thread):
|
class WrapperThread(Thread):
|
||||||
def __init__(self, func, args):
|
def __init__(self, func, args):
|
||||||
super(WrapperThread, self).__init__()
|
super(WrapperThread, self).__init__()
|
||||||
@@ -95,9 +110,8 @@ class WrapperThread(Thread):
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
args = parse_arguments()
|
args = parse_arguments()
|
||||||
|
|
||||||
thread_num = args.thread_num
|
|
||||||
imgs_list = get_image_list(args.image_path)
|
imgs_list = get_image_list(args.image_path)
|
||||||
# 配置runtime,加载模型
|
# configure runtime and load model
|
||||||
runtime_option = build_option(args)
|
runtime_option = build_option(args)
|
||||||
|
|
||||||
model_file = os.path.join(args.model, "inference.pdmodel")
|
model_file = os.path.join(args.model, "inference.pdmodel")
|
||||||
@@ -105,24 +119,38 @@ if __name__ == '__main__':
|
|||||||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||||||
model = fd.vision.classification.PaddleClasModel(
|
model = fd.vision.classification.PaddleClasModel(
|
||||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||||
threads = []
|
if args.use_multi_process:
|
||||||
image_num_each_thread = int(len(imgs_list) / thread_num)
|
results = []
|
||||||
for i in range(thread_num):
|
process_num = args.process_num
|
||||||
if i == thread_num - 1:
|
with Pool(process_num) as pool:
|
||||||
t = WrapperThread(
|
results = pool.map(process_predict, imgs_list)
|
||||||
predict,
|
for result in results:
|
||||||
args=(model, imgs_list[i * image_num_each_thread:], i))
|
print(result)
|
||||||
else:
|
else:
|
||||||
t = WrapperThread(
|
threads = []
|
||||||
predict,
|
thread_num = args.thread_num
|
||||||
args=(model.clone(), imgs_list[i * image_num_each_thread:(
|
image_num_each_thread = int(len(imgs_list) / thread_num)
|
||||||
i + 1) * image_num_each_thread - 1], i))
|
# unless you want independent model in each thread, actually model.clone()
|
||||||
threads.append(t)
|
# is the same as model when creating thead because of the existence of
|
||||||
t.start()
|
# GIL(Global Interpreter Lock) in python. In addition, model.clone() will consume
|
||||||
|
# additional memory to store independent member variables
|
||||||
|
for i in range(thread_num):
|
||||||
|
if i == thread_num - 1:
|
||||||
|
t = WrapperThread(
|
||||||
|
predict,
|
||||||
|
args=(model.clone(), imgs_list[i * image_num_each_thread:],
|
||||||
|
args.topk))
|
||||||
|
else:
|
||||||
|
t = WrapperThread(
|
||||||
|
predict,
|
||||||
|
args=(model.clone(), imgs_list[i * image_num_each_thread:(
|
||||||
|
i + 1) * image_num_each_thread - 1], args.topk))
|
||||||
|
threads.append(t)
|
||||||
|
t.start()
|
||||||
|
|
||||||
for i in range(thread_num):
|
for i in range(thread_num):
|
||||||
threads[i].join()
|
threads[i].join()
|
||||||
|
|
||||||
for i in range(thread_num):
|
for i in range(thread_num):
|
||||||
for result in threads[i].get_result():
|
for result in threads[i].get_result():
|
||||||
print('thread:', i, ', result: ', result)
|
print('thread:', i, ', result: ', result)
|
Reference in New Issue
Block a user