mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Other]Update python && cpp multi_thread examples (#876)
* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug * Update python && cpp multi_thread examples * Add cpp && python directory * Add README.md for examples * Delete redundant code Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
77
tutorials/multi_thread/python/README.md
Normal file
77
tutorials/multi_thread/python/README.md
Normal file
@@ -0,0 +1,77 @@
|
||||
# PaddleClas模型 Python部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/classification/paddleclas/python
|
||||
|
||||
# 下载ResNet50_vd模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
|
||||
# CPU推理
|
||||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
|
||||
# GPU推理
|
||||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
|
||||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
|
||||
# IPU推理(注意:IPU推理首次运行会有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device ipu --topk 1
|
||||
```
|
||||
|
||||
运行完成后返回结果如下所示
|
||||
```bash
|
||||
ClassifyResult(
|
||||
label_ids: 153,
|
||||
scores: 0.686229,
|
||||
)
|
||||
```
|
||||
|
||||
## PaddleClasModel Python接口
|
||||
|
||||
```python
|
||||
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **config_file**(str): 推理部署配置文件
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||
|
||||
### predict函数
|
||||
|
||||
> ```python
|
||||
> PaddleClasModel.predict(input_image, topk=1)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出分类topk结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
|
||||
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [PaddleClas 模型介绍](..)
|
||||
- [PaddleClas C++部署](../cpp)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
156
tutorials/multi_thread/python/multi_thread_process.py
Normal file
156
tutorials/multi_thread/python/multi_thread_process.py
Normal file
@@ -0,0 +1,156 @@
|
||||
import numpy as np
|
||||
from threading import Thread
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import psutil
|
||||
from multiprocessing import Pool
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleClas model.")
|
||||
parser.add_argument(
|
||||
"--image_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The directory or path or file list of the images to be predicted."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--topk", type=int, default=1, help="Return topk results.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu' or 'ipu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
parser.add_argument("--thread_num", type=int, default=1, help="thread num")
|
||||
parser.add_argument(
|
||||
"--use_multi_process",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use multi process.")
|
||||
parser.add_argument(
|
||||
"--process_num", type=int, default=1, help="process num")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def get_image_list(image_path):
|
||||
image_list = []
|
||||
if os.path.isfile(image_path):
|
||||
image_list.append(image_path)
|
||||
# load image in a directory
|
||||
elif os.path.isdir(image_path):
|
||||
for root, dirs, files in os.walk(image_path):
|
||||
for f in files:
|
||||
image_list.append(os.path.join(root, f))
|
||||
else:
|
||||
raise FileNotFoundError(
|
||||
'{} is not found. it should be a path of image, or a directory including images.'.
|
||||
format(image_path))
|
||||
|
||||
if len(image_list) == 0:
|
||||
raise RuntimeError(
|
||||
'There are not image file in `--image_path`={}'.format(image_path))
|
||||
|
||||
return image_list
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.device.lower() == "ipu":
|
||||
option.use_ipu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
return option
|
||||
|
||||
|
||||
def predict(model, img_list, topk):
|
||||
result_list = []
|
||||
# predict classification result
|
||||
for image in img_list:
|
||||
im = cv2.imread(image)
|
||||
result = model.predict(im, topk)
|
||||
result_list.append(result)
|
||||
return result_list
|
||||
|
||||
|
||||
def process_predict(image):
|
||||
# predict classification result
|
||||
im = cv2.imread(image)
|
||||
result = model.predict(im, args.topk)
|
||||
return result
|
||||
|
||||
|
||||
class WrapperThread(Thread):
|
||||
def __init__(self, func, args):
|
||||
super(WrapperThread, self).__init__()
|
||||
self.func = func
|
||||
self.args = args
|
||||
|
||||
def run(self):
|
||||
self.result = self.func(*self.args)
|
||||
|
||||
def get_result(self):
|
||||
return self.result
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_arguments()
|
||||
|
||||
imgs_list = get_image_list(args.image_path)
|
||||
# configure runtime and load model
|
||||
runtime_option = build_option(args)
|
||||
|
||||
model_file = os.path.join(args.model, "inference.pdmodel")
|
||||
params_file = os.path.join(args.model, "inference.pdiparams")
|
||||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||||
model = fd.vision.classification.PaddleClasModel(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
if args.use_multi_process:
|
||||
results = []
|
||||
process_num = args.process_num
|
||||
with Pool(process_num) as pool:
|
||||
results = pool.map(process_predict, imgs_list)
|
||||
for result in results:
|
||||
print(result)
|
||||
else:
|
||||
threads = []
|
||||
thread_num = args.thread_num
|
||||
image_num_each_thread = int(len(imgs_list) / thread_num)
|
||||
# unless you want independent model in each thread, actually model.clone()
|
||||
# is the same as model when creating thead because of the existence of
|
||||
# GIL(Global Interpreter Lock) in python. In addition, model.clone() will consume
|
||||
# additional memory to store independent member variables
|
||||
for i in range(thread_num):
|
||||
if i == thread_num - 1:
|
||||
t = WrapperThread(
|
||||
predict,
|
||||
args=(model.clone(), imgs_list[i * image_num_each_thread:],
|
||||
args.topk))
|
||||
else:
|
||||
t = WrapperThread(
|
||||
predict,
|
||||
args=(model.clone(), imgs_list[i * image_num_each_thread:(
|
||||
i + 1) * image_num_each_thread - 1], args.topk))
|
||||
threads.append(t)
|
||||
t.start()
|
||||
|
||||
for i in range(thread_num):
|
||||
threads[i].join()
|
||||
|
||||
for i in range(thread_num):
|
||||
for result in threads[i].get_result():
|
||||
print('thread:', i, ', result: ', result)
|
Reference in New Issue
Block a user