mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Other]Update python && cpp multi_thread examples (#876)
* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug * Update python && cpp multi_thread examples * Add cpp && python directory * Add README.md for examples * Delete redundant code Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
14
tutorials/multi_thread/cpp/CMakeLists.txt
Normal file
14
tutorials/multi_thread/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
PROJECT(multi_thread_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(multi_thread_demo ${PROJECT_SOURCE_DIR}/multi_thread.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(multi_thread_demo ${FASTDEPLOY_LIBS} pthread)
|
79
tutorials/multi_thread/cpp/README.md
Normal file
79
tutorials/multi_thread/cpp/README.md
Normal file
@@ -0,0 +1,79 @@
|
||||
# PaddleClas C++部署示例
|
||||
|
||||
本目录下提供`infer.cc`快速完成PaddleClas系列模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# 下载ResNet50_vd模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
|
||||
# GPU推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
|
||||
# GPU上TensorRT推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
|
||||
```
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
## PaddleClas C++接口
|
||||
|
||||
### PaddleClas类
|
||||
|
||||
```c++
|
||||
fastdeploy::vision::classification::PaddleClasModel(
|
||||
const string& model_file,
|
||||
const string& params_file,
|
||||
const string& config_file,
|
||||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
```
|
||||
|
||||
PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **config_file**(str): 推理部署配置文件
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||
|
||||
#### Predict函数
|
||||
|
||||
> ```c++
|
||||
> PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
|
||||
> ```
|
||||
>
|
||||
> 模型预测接口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||
> > * **result**: 分类结果,包括label_id,以及相应的置信度, ClassifyResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
|
||||
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
164
tutorials/multi_thread/cpp/multi_thread.cc
Normal file
164
tutorials/multi_thread/cpp/multi_thread.cc
Normal file
@@ -0,0 +1,164 @@
|
||||
#include <thread>
|
||||
#include "fastdeploy/vision.h"
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void Predict(fastdeploy::vision::classification::PaddleClasModel *model, int thread_id, const std::vector<std::string>& images) {
|
||||
for (auto const &image_file : images) {
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model->Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
// print res
|
||||
std::cout << "Thread Id: " << thread_id << std::endl;
|
||||
std::cout << res.Str() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void GetImageList(std::vector<std::vector<std::string>>* image_list, const std::string& image_file_path, int thread_num){
|
||||
std::vector<cv::String> images;
|
||||
cv::glob(image_file_path, images, false);
|
||||
// number of image files in images folder
|
||||
size_t count = images.size();
|
||||
size_t num = count / thread_num;
|
||||
for (int i = 0; i < thread_num; i++) {
|
||||
std::vector<std::string> temp_list;
|
||||
if (i == thread_num - 1) {
|
||||
for (size_t j = i*num; j < count; j++){
|
||||
temp_list.push_back(images[j]);
|
||||
}
|
||||
} else {
|
||||
for (size_t j = 0; j < num; j++){
|
||||
temp_list.push_back(images[i * num + j]);
|
||||
}
|
||||
}
|
||||
(*image_list)[i] = temp_list;
|
||||
}
|
||||
}
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||
model_file, params_file, config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<decltype(model.Clone())> models;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
models.emplace_back(std::move(model.Clone()));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||
GetImageList(&image_list, image_file_path, thread_num);
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UsePaddleBackend();
|
||||
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||
model_file, params_file, config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<decltype(model.Clone())> models;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
models.emplace_back(std::move(model.Clone()));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||
GetImageList(&image_list, image_file_path, thread_num);
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
|
||||
void TrtInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UseTrtBackend();
|
||||
// for model.Clone() must SetTrtInputShape first
|
||||
option.SetTrtInputShape("inputs", {1, 3, 224, 224});
|
||||
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||
model_file, params_file, config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<decltype(model.Clone())> models;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
models.emplace_back(std::move(model.Clone()));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||
GetImageList(&image_list, image_file_path, thread_num);
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
if (argc < 5) {
|
||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option thread_num, "
|
||||
"e.g ./multi_thread_demo ./ResNet50_vd ./test.jpeg 0 3"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2], std::atoi(argv[4]));
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2], std::atoi(argv[4]));
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
TrtInfer(argv[1], argv[2], std::atoi(argv[4]));
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user