[Other]Update python && cpp multi_thread examples (#876)

* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

* Update segmentation result docs

* Update old predict api and DisableNormalizeAndPermute

* Update resize segmentation label map with cv::INTER_NEAREST

* Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg

* Add multi thread demo

* Add python model clone function

* Add multi thread python && C++ example

* Fix bug

* Update python && cpp multi_thread examples

* Add cpp && python directory

* Add README.md for examples

* Delete redundant code

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-12-14 19:18:53 +08:00
committed by GitHub
parent ce4867d14e
commit ada54bfd47
6 changed files with 334 additions and 39 deletions

View File

@@ -0,0 +1,14 @@
PROJECT(multi_thread_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(multi_thread_demo ${PROJECT_SOURCE_DIR}/multi_thread.cc)
# 添加FastDeploy库依赖
target_link_libraries(multi_thread_demo ${FASTDEPLOY_LIBS} pthread)

View File

@@ -0,0 +1,79 @@
# PaddleClas C++部署示例
本目录下提供`infer.cc`快速完成PaddleClas系列模型在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上ResNet50_vd推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
```bash
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
# GPU推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
# GPU上TensorRT推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## PaddleClas C++接口
### PaddleClas类
```c++
fastdeploy::vision::classification::PaddleClasModel(
const string& model_file,
const string& params_file,
const string& config_file,
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
```
PaddleClas模型加载和初始化其中model_file, params_file为训练模型导出的Paddle inference文件具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
#### Predict函数
> ```c++
> PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 分类结果包括label_id以及相应的置信度, ClassifyResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
> > * **topk**(int):返回预测概率最高的topk个分类结果默认为1
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,164 @@
#include <thread>
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void Predict(fastdeploy::vision::classification::PaddleClasModel *model, int thread_id, const std::vector<std::string>& images) {
for (auto const &image_file : images) {
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model->Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
std::cout << "Thread Id: " << thread_id << std::endl;
std::cout << res.Str() << std::endl;
}
}
void GetImageList(std::vector<std::vector<std::string>>* image_list, const std::string& image_file_path, int thread_num){
std::vector<cv::String> images;
cv::glob(image_file_path, images, false);
// number of image files in images folder
size_t count = images.size();
size_t num = count / thread_num;
for (int i = 0; i < thread_num; i++) {
std::vector<std::string> temp_list;
if (i == thread_num - 1) {
for (size_t j = i*num; j < count; j++){
temp_list.push_back(images[j]);
}
} else {
for (size_t j = 0; j < num; j++){
temp_list.push_back(images[i * num + j]);
}
}
(*image_list)[i] = temp_list;
}
}
void CpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
auto model_file = model_dir + sep + "inference.pdmodel";
auto params_file = model_dir + sep + "inference.pdiparams";
auto config_file = model_dir + sep + "inference_cls.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseCpu();
auto model = fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
std::vector<decltype(model.Clone())> models;
for (int i = 0; i < thread_num; ++i) {
models.emplace_back(std::move(model.Clone()));
}
std::vector<std::vector<std::string>> image_list(thread_num);
GetImageList(&image_list, image_file_path, thread_num);
std::vector<std::thread> threads;
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
}
for (int i = 0; i < thread_num; ++i) {
threads[i].join();
}
}
void GpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
auto model_file = model_dir + sep + "inference.pdmodel";
auto params_file = model_dir + sep + "inference.pdiparams";
auto config_file = model_dir + sep + "inference_cls.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UsePaddleBackend();
auto model = fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
std::vector<decltype(model.Clone())> models;
for (int i = 0; i < thread_num; ++i) {
models.emplace_back(std::move(model.Clone()));
}
std::vector<std::vector<std::string>> image_list(thread_num);
GetImageList(&image_list, image_file_path, thread_num);
std::vector<std::thread> threads;
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
}
for (int i = 0; i < thread_num; ++i) {
threads[i].join();
}
}
void TrtInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
auto model_file = model_dir + sep + "inference.pdmodel";
auto params_file = model_dir + sep + "inference.pdiparams";
auto config_file = model_dir + sep + "inference_cls.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
// for model.Clone() must SetTrtInputShape first
option.SetTrtInputShape("inputs", {1, 3, 224, 224});
auto model = fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
std::vector<decltype(model.Clone())> models;
for (int i = 0; i < thread_num; ++i) {
models.emplace_back(std::move(model.Clone()));
}
std::vector<std::vector<std::string>> image_list(thread_num);
GetImageList(&image_list, image_file_path, thread_num);
std::vector<std::thread> threads;
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
}
for (int i = 0; i < thread_num; ++i) {
threads[i].join();
}
}
int main(int argc, char **argv) {
if (argc < 5) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option thread_num, "
"e.g ./multi_thread_demo ./ResNet50_vd ./test.jpeg 0 3"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2], std::atoi(argv[4]));
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2], std::atoi(argv[4]));
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2], std::atoi(argv[4]));
}
return 0;
}

View File

@@ -0,0 +1,77 @@
# PaddleClas模型 Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/paddleclas/python
# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
# GPU推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
# IPU推理注意IPU推理首次运行会有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device ipu --topk 1
```
运行完成后返回结果如下所示
```bash
ClassifyResult(
label_ids: 153,
scores: 0.686229,
)
```
## PaddleClasModel Python接口
```python
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PaddleClas模型加载和初始化其中model_file, params_file为训练模型导出的Paddle inference文件具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### predict函数
> ```python
> PaddleClasModel.predict(input_image, topk=1)
> ```
>
> 模型预测结口输入图像直接输出分类topk结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> > * **topk**(int):返回预测概率最高的topk个分类结果默认为1
> **返回**
>
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [PaddleClas 模型介绍](..)
- [PaddleClas C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,156 @@
import numpy as np
from threading import Thread
import fastdeploy as fd
import cv2
import os
import psutil
from multiprocessing import Pool
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of PaddleClas model.")
parser.add_argument(
"--image_path",
type=str,
required=True,
help="The directory or path or file list of the images to be predicted."
)
parser.add_argument(
"--topk", type=int, default=1, help="Return topk results.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu' or 'ipu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
parser.add_argument("--thread_num", type=int, default=1, help="thread num")
parser.add_argument(
"--use_multi_process",
type=ast.literal_eval,
default=False,
help="Wether to use multi process.")
parser.add_argument(
"--process_num", type=int, default=1, help="process num")
return parser.parse_args()
def get_image_list(image_path):
image_list = []
if os.path.isfile(image_path):
image_list.append(image_path)
# load image in a directory
elif os.path.isdir(image_path):
for root, dirs, files in os.walk(image_path):
for f in files:
image_list.append(os.path.join(root, f))
else:
raise FileNotFoundError(
'{} is not found. it should be a path of image, or a directory including images.'.
format(image_path))
if len(image_list) == 0:
raise RuntimeError(
'There are not image file in `--image_path`={}'.format(image_path))
return image_list
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.device.lower() == "ipu":
option.use_ipu()
if args.use_trt:
option.use_trt_backend()
return option
def predict(model, img_list, topk):
result_list = []
# predict classification result
for image in img_list:
im = cv2.imread(image)
result = model.predict(im, topk)
result_list.append(result)
return result_list
def process_predict(image):
# predict classification result
im = cv2.imread(image)
result = model.predict(im, args.topk)
return result
class WrapperThread(Thread):
def __init__(self, func, args):
super(WrapperThread, self).__init__()
self.func = func
self.args = args
def run(self):
self.result = self.func(*self.args)
def get_result(self):
return self.result
if __name__ == '__main__':
args = parse_arguments()
imgs_list = get_image_list(args.image_path)
# configure runtime and load model
runtime_option = build_option(args)
model_file = os.path.join(args.model, "inference.pdmodel")
params_file = os.path.join(args.model, "inference.pdiparams")
config_file = os.path.join(args.model, "inference_cls.yaml")
model = fd.vision.classification.PaddleClasModel(
model_file, params_file, config_file, runtime_option=runtime_option)
if args.use_multi_process:
results = []
process_num = args.process_num
with Pool(process_num) as pool:
results = pool.map(process_predict, imgs_list)
for result in results:
print(result)
else:
threads = []
thread_num = args.thread_num
image_num_each_thread = int(len(imgs_list) / thread_num)
# unless you want independent model in each thread, actually model.clone()
# is the same as model when creating thead because of the existence of
# GIL(Global Interpreter Lock) in python. In addition, model.clone() will consume
# additional memory to store independent member variables
for i in range(thread_num):
if i == thread_num - 1:
t = WrapperThread(
predict,
args=(model.clone(), imgs_list[i * image_num_each_thread:],
args.topk))
else:
t = WrapperThread(
predict,
args=(model.clone(), imgs_list[i * image_num_each_thread:(
i + 1) * image_num_each_thread - 1], args.topk))
threads.append(t)
t.start()
for i in range(thread_num):
threads[i].join()
for i in range(thread_num):
for result in threads[i].get_result():
print('thread:', i, ', result: ', result)