mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Other]Update python && cpp multi_thread examples (#876)
* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug * Update python && cpp multi_thread examples * Add cpp && python directory * Add README.md for examples * Delete redundant code Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
14
tutorials/multi_thread/cpp/CMakeLists.txt
Normal file
14
tutorials/multi_thread/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
PROJECT(multi_thread_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(multi_thread_demo ${PROJECT_SOURCE_DIR}/multi_thread.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(multi_thread_demo ${FASTDEPLOY_LIBS} pthread)
|
79
tutorials/multi_thread/cpp/README.md
Normal file
79
tutorials/multi_thread/cpp/README.md
Normal file
@@ -0,0 +1,79 @@
|
||||
# PaddleClas C++部署示例
|
||||
|
||||
本目录下提供`infer.cc`快速完成PaddleClas系列模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# 下载ResNet50_vd模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
|
||||
# GPU推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
|
||||
# GPU上TensorRT推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
|
||||
```
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
## PaddleClas C++接口
|
||||
|
||||
### PaddleClas类
|
||||
|
||||
```c++
|
||||
fastdeploy::vision::classification::PaddleClasModel(
|
||||
const string& model_file,
|
||||
const string& params_file,
|
||||
const string& config_file,
|
||||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
```
|
||||
|
||||
PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **config_file**(str): 推理部署配置文件
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||
|
||||
#### Predict函数
|
||||
|
||||
> ```c++
|
||||
> PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
|
||||
> ```
|
||||
>
|
||||
> 模型预测接口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||
> > * **result**: 分类结果,包括label_id,以及相应的置信度, ClassifyResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
|
||||
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
164
tutorials/multi_thread/cpp/multi_thread.cc
Normal file
164
tutorials/multi_thread/cpp/multi_thread.cc
Normal file
@@ -0,0 +1,164 @@
|
||||
#include <thread>
|
||||
#include "fastdeploy/vision.h"
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void Predict(fastdeploy::vision::classification::PaddleClasModel *model, int thread_id, const std::vector<std::string>& images) {
|
||||
for (auto const &image_file : images) {
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model->Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
// print res
|
||||
std::cout << "Thread Id: " << thread_id << std::endl;
|
||||
std::cout << res.Str() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void GetImageList(std::vector<std::vector<std::string>>* image_list, const std::string& image_file_path, int thread_num){
|
||||
std::vector<cv::String> images;
|
||||
cv::glob(image_file_path, images, false);
|
||||
// number of image files in images folder
|
||||
size_t count = images.size();
|
||||
size_t num = count / thread_num;
|
||||
for (int i = 0; i < thread_num; i++) {
|
||||
std::vector<std::string> temp_list;
|
||||
if (i == thread_num - 1) {
|
||||
for (size_t j = i*num; j < count; j++){
|
||||
temp_list.push_back(images[j]);
|
||||
}
|
||||
} else {
|
||||
for (size_t j = 0; j < num; j++){
|
||||
temp_list.push_back(images[i * num + j]);
|
||||
}
|
||||
}
|
||||
(*image_list)[i] = temp_list;
|
||||
}
|
||||
}
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||
model_file, params_file, config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<decltype(model.Clone())> models;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
models.emplace_back(std::move(model.Clone()));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||
GetImageList(&image_list, image_file_path, thread_num);
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UsePaddleBackend();
|
||||
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||
model_file, params_file, config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<decltype(model.Clone())> models;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
models.emplace_back(std::move(model.Clone()));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||
GetImageList(&image_list, image_file_path, thread_num);
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
|
||||
void TrtInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
|
||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UseTrtBackend();
|
||||
// for model.Clone() must SetTrtInputShape first
|
||||
option.SetTrtInputShape("inputs", {1, 3, 224, 224});
|
||||
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||
model_file, params_file, config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<decltype(model.Clone())> models;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
models.emplace_back(std::move(model.Clone()));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::string>> image_list(thread_num);
|
||||
GetImageList(&image_list, image_file_path, thread_num);
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
if (argc < 5) {
|
||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option thread_num, "
|
||||
"e.g ./multi_thread_demo ./ResNet50_vd ./test.jpeg 0 3"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2], std::atoi(argv[4]));
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2], std::atoi(argv[4]));
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
TrtInfer(argv[1], argv[2], std::atoi(argv[4]));
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
77
tutorials/multi_thread/python/README.md
Normal file
77
tutorials/multi_thread/python/README.md
Normal file
@@ -0,0 +1,77 @@
|
||||
# PaddleClas模型 Python部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/classification/paddleclas/python
|
||||
|
||||
# 下载ResNet50_vd模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
|
||||
# CPU推理
|
||||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
|
||||
# GPU推理
|
||||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
|
||||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
|
||||
# IPU推理(注意:IPU推理首次运行会有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device ipu --topk 1
|
||||
```
|
||||
|
||||
运行完成后返回结果如下所示
|
||||
```bash
|
||||
ClassifyResult(
|
||||
label_ids: 153,
|
||||
scores: 0.686229,
|
||||
)
|
||||
```
|
||||
|
||||
## PaddleClasModel Python接口
|
||||
|
||||
```python
|
||||
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **config_file**(str): 推理部署配置文件
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||
|
||||
### predict函数
|
||||
|
||||
> ```python
|
||||
> PaddleClasModel.predict(input_image, topk=1)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出分类topk结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
|
||||
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [PaddleClas 模型介绍](..)
|
||||
- [PaddleClas C++部署](../cpp)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
156
tutorials/multi_thread/python/multi_thread_process.py
Normal file
156
tutorials/multi_thread/python/multi_thread_process.py
Normal file
@@ -0,0 +1,156 @@
|
||||
import numpy as np
|
||||
from threading import Thread
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import psutil
|
||||
from multiprocessing import Pool
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleClas model.")
|
||||
parser.add_argument(
|
||||
"--image_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The directory or path or file list of the images to be predicted."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--topk", type=int, default=1, help="Return topk results.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu' or 'ipu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
parser.add_argument("--thread_num", type=int, default=1, help="thread num")
|
||||
parser.add_argument(
|
||||
"--use_multi_process",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use multi process.")
|
||||
parser.add_argument(
|
||||
"--process_num", type=int, default=1, help="process num")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def get_image_list(image_path):
|
||||
image_list = []
|
||||
if os.path.isfile(image_path):
|
||||
image_list.append(image_path)
|
||||
# load image in a directory
|
||||
elif os.path.isdir(image_path):
|
||||
for root, dirs, files in os.walk(image_path):
|
||||
for f in files:
|
||||
image_list.append(os.path.join(root, f))
|
||||
else:
|
||||
raise FileNotFoundError(
|
||||
'{} is not found. it should be a path of image, or a directory including images.'.
|
||||
format(image_path))
|
||||
|
||||
if len(image_list) == 0:
|
||||
raise RuntimeError(
|
||||
'There are not image file in `--image_path`={}'.format(image_path))
|
||||
|
||||
return image_list
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.device.lower() == "ipu":
|
||||
option.use_ipu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
return option
|
||||
|
||||
|
||||
def predict(model, img_list, topk):
|
||||
result_list = []
|
||||
# predict classification result
|
||||
for image in img_list:
|
||||
im = cv2.imread(image)
|
||||
result = model.predict(im, topk)
|
||||
result_list.append(result)
|
||||
return result_list
|
||||
|
||||
|
||||
def process_predict(image):
|
||||
# predict classification result
|
||||
im = cv2.imread(image)
|
||||
result = model.predict(im, args.topk)
|
||||
return result
|
||||
|
||||
|
||||
class WrapperThread(Thread):
|
||||
def __init__(self, func, args):
|
||||
super(WrapperThread, self).__init__()
|
||||
self.func = func
|
||||
self.args = args
|
||||
|
||||
def run(self):
|
||||
self.result = self.func(*self.args)
|
||||
|
||||
def get_result(self):
|
||||
return self.result
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_arguments()
|
||||
|
||||
imgs_list = get_image_list(args.image_path)
|
||||
# configure runtime and load model
|
||||
runtime_option = build_option(args)
|
||||
|
||||
model_file = os.path.join(args.model, "inference.pdmodel")
|
||||
params_file = os.path.join(args.model, "inference.pdiparams")
|
||||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||||
model = fd.vision.classification.PaddleClasModel(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
if args.use_multi_process:
|
||||
results = []
|
||||
process_num = args.process_num
|
||||
with Pool(process_num) as pool:
|
||||
results = pool.map(process_predict, imgs_list)
|
||||
for result in results:
|
||||
print(result)
|
||||
else:
|
||||
threads = []
|
||||
thread_num = args.thread_num
|
||||
image_num_each_thread = int(len(imgs_list) / thread_num)
|
||||
# unless you want independent model in each thread, actually model.clone()
|
||||
# is the same as model when creating thead because of the existence of
|
||||
# GIL(Global Interpreter Lock) in python. In addition, model.clone() will consume
|
||||
# additional memory to store independent member variables
|
||||
for i in range(thread_num):
|
||||
if i == thread_num - 1:
|
||||
t = WrapperThread(
|
||||
predict,
|
||||
args=(model.clone(), imgs_list[i * image_num_each_thread:],
|
||||
args.topk))
|
||||
else:
|
||||
t = WrapperThread(
|
||||
predict,
|
||||
args=(model.clone(), imgs_list[i * image_num_each_thread:(
|
||||
i + 1) * image_num_each_thread - 1], args.topk))
|
||||
threads.append(t)
|
||||
t.start()
|
||||
|
||||
for i in range(thread_num):
|
||||
threads[i].join()
|
||||
|
||||
for i in range(thread_num):
|
||||
for result in threads[i].get_result():
|
||||
print('thread:', i, ', result: ', result)
|
Reference in New Issue
Block a user