mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-03 11:02:01 +08:00
@@ -15,23 +15,23 @@ RKNPU部署模型前需要将Paddle模型转换成RKNN模型,具体步骤如
|
||||
## 模型转换example
|
||||
下面以Picodet-npu为例子,教大家如何转换PaddleDetection模型到RKNN模型。
|
||||
```bash
|
||||
## 下载Paddle静态图模型并解压
|
||||
wget https://bj.bcebos.com/fastdeploy/models/rknn2/picodet_s_416_coco_npu.zip
|
||||
unzip -qo picodet_s_416_coco_npu.zip
|
||||
# 下载Paddle静态图模型并解压
|
||||
wget https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet.tar
|
||||
tar xvf picodet_s_416_coco_lcnet.zip
|
||||
|
||||
# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
|
||||
paddle2onnx --model_dir picodet_s_416_coco_npu \
|
||||
paddle2onnx --model_dir picodet_s_416_coco_lcnet \
|
||||
--model_filename model.pdmodel \
|
||||
--params_filename model.pdiparams \
|
||||
--save_file picodet_s_416_coco_npu/picodet_s_416_coco_npu.onnx \
|
||||
--save_file picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--enable_dev_version True
|
||||
|
||||
python -m paddle2onnx.optimize --input_model picodet_s_416_coco_npu/picodet_s_416_coco_npu.onnx \
|
||||
--output_model picodet_s_416_coco_npu/picodet_s_416_coco_npu.onnx \
|
||||
python -m paddle2onnx.optimize --input_model picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--output_model picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--input_shape_dict "{'image':[1,3,416,416]}"
|
||||
# ONNX模型转RKNN模型
|
||||
# 转换模型,模型将生成在picodet_s_320_coco_lcnet_non_postprocess目录下
|
||||
python tools/rknpu2/export.py --config_path tools/rknpu2/config/RK3588/picodet_s_416_coco_npu.yaml
|
||||
python tools/rknpu2/export.py --config_path tools/rknpu2/config/RK3588/picodet_s_416_coco_lcnet.yaml
|
||||
```
|
||||
|
||||
- [Python部署](./python)
|
||||
|
||||
@@ -10,11 +10,11 @@
|
||||
为了方便开发者的测试,下面提供了YOLOv5导出的各系列模型,开发者可直接下载使用。(下表中模型的精度来源于源官方库)
|
||||
| 模型 | 大小 | 精度 |
|
||||
|:---------------------------------------------------------------- |:----- |:----- |
|
||||
| [YOLOv5n](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n.onnx) | 1.9MB | 28.4% |
|
||||
| [YOLOv5s](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx) | 7.2MB | 37.2% |
|
||||
| [YOLOv5m](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5m.onnx) | 21.2MB | 45.2% |
|
||||
| [YOLOv5l](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5l.onnx) | 46.5MB | 48.8% |
|
||||
| [YOLOv5x](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x.onnx) | 86.7MB | 50.7% |
|
||||
| [YOLOv5n](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n.onnx) | 7.5MB | 28.4% |
|
||||
| [YOLOv5s](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx) | 28.9MB | 37.2% |
|
||||
| [YOLOv5m](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5m.onnx) | 84.7MB | 45.2% |
|
||||
| [YOLOv5l](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5l.onnx) | 186.2MB | 48.8% |
|
||||
| [YOLOv5x](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x.onnx) | 346.9MB | 50.7% |
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user