[C api] Add install command for c api and a demo in paddledection (#1289)

* add c api demo and fix  bugs

* fix doc

* add config.h.in

* add config.h.in

* add config.h.in
This commit is contained in:
chenjian
2023-02-14 14:28:23 +08:00
committed by GitHub
parent 3aafceed07
commit abae858f09
21 changed files with 782 additions and 89 deletions

View File

@@ -715,6 +715,16 @@ if(WITH_ASCEND)
)
endif()
if(WITH_CAPI)
install(
DIRECTORY ${PROJECT_SOURCE_DIR}/c_api/fastdeploy_capi
DESTINATION ${CMAKE_INSTALL_PREFIX}/include
FILES_MATCHING
PATTERN "*.h"
PATTERN "*/types_internal.h" EXCLUDE
)
endif()
include(${PROJECT_SOURCE_DIR}/cmake/config_cpack.cmake)
############################### Building: FastDeploy Python Wheel #############################

View File

@@ -33,6 +33,7 @@ set(ORT_DIRECTORY "@ORT_DIRECTORY@")
set(OPENVINO_DIRECTORY "@OPENVINO_DIRECTORY@")
set(RKNN2_TARGET_SOC "@RKNN2_TARGET_SOC@")
set(WITH_KUNLUNXIN @WITH_KUNLUNXIN@)
set(WITH_CAPI @WITH_CAPI@)
# Whether to use FastDeploy static lib. The default
# value for this option is determined by the SDK
# build-time options.
@@ -357,6 +358,7 @@ message(STATUS " CMAKE_INSTALL_PREFIX : ${CMAKE_INSTALL_PREFIX}")
message(STATUS " CMAKE_MODULE_PATH : ${CMAKE_MODULE_PATH}")
message(STATUS "")
message(STATUS " WITH_GPU : ${WITH_GPU}")
message(STATUS " WITH_CAPI : ${WITH_CAPI}")
message(STATUS " ENABLE_ORT_BACKEND : ${ENABLE_ORT_BACKEND}")
message(STATUS " ENABLE_RKNPU2_BACKEND : ${ENABLE_RKNPU2_BACKEND}")
message(STATUS " ENABLE_SOPHGO_BACKEND : ${ENABLE_SOPHGO_BACKEND}")
@@ -365,6 +367,7 @@ message(STATUS " ENABLE_POROS_BACKEND : ${ENABLE_POROS_BACKEND}")
message(STATUS " ENABLE_OPENVINO_BACKEND : ${ENABLE_OPENVINO_BACKEND}")
message(STATUS " ENABLE_TRT_BACKEND : ${ENABLE_TRT_BACKEND}")
message(STATUS " ENABLE_LITE_BACKEND : ${ENABLE_LITE_BACKEND}")
if(ENABLE_PADDLE_BACKEND)
message(STATUS " Paddle Inference version : ${PADDLEINFERENCE_VERSION}")
endif()

View File

@@ -19,6 +19,7 @@ if(NOT WITH_CAPI)
return()
endif()
configure_file(${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/c_api/fastdeploy_capi/config.h.in ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/c_api/fastdeploy_capi/config.h)
file(GLOB_RECURSE DEPLOY_CAPI_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/c_api/fastdeploy_capi/*.cc)
if(NOT ENABLE_VISION)
file(GLOB_RECURSE DEPLOY_VISION_CAPI_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/c_api/fastdeploy_capi/vision/*.cc)

22
c_api/fastdeploy_capi/config.h Executable file
View File

@@ -0,0 +1,22 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifndef ENABLE_VISION
#define ENABLE_VISION
#endif
#ifndef ENABLE_TEXT
/* #undef ENABLE_TEXT */
#endif

View File

@@ -0,0 +1,22 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifndef ENABLE_VISION
#cmakedefine ENABLE_VISION
#endif
#ifndef ENABLE_TEXT
#cmakedefine ENABLE_TEXT
#endif

View File

@@ -0,0 +1,71 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#define FD_ENUM(type) \
typedef int32_t type; \
enum
FD_ENUM(FD_C_ModelFormat){
AUTOREC, ///< Auto recognize the model format by model file name
PADDLE, ///< Model with paddlepaddle format
ONNX, ///< Model with ONNX format
RKNN, ///< Model with RKNN format
TORCHSCRIPT, ///< Model with TorchScript format
SOPHGO, ///< Model with SOPHGO format
};
FD_ENUM(FD_C_rknpu2_CpuName){
RK356X = 0, /* run on RK356X. */
RK3588 = 1, /* default,run on RK3588. */
UNDEFINED,
};
FD_ENUM(FD_C_rknpu2_CoreMask){
RKNN_NPU_CORE_AUTO = 0, //< default, run on NPU core randomly.
RKNN_NPU_CORE_0 = 1, //< run on NPU core 0.
RKNN_NPU_CORE_1 = 2, //< run on NPU core 1.
RKNN_NPU_CORE_2 = 4, //< run on NPU core 2.
RKNN_NPU_CORE_0_1 = RKNN_NPU_CORE_0 |
RKNN_NPU_CORE_1, //< run on NPU core 1 and core 2.
RKNN_NPU_CORE_0_1_2 = RKNN_NPU_CORE_0_1 |
RKNN_NPU_CORE_2, //< run on NPU core 1 and core 2.
RKNN_NPU_CORE_UNDEFINED,
};
FD_ENUM(FD_C_LitePowerMode){
LITE_POWER_HIGH = 0, ///< Use Lite Backend with high power mode
LITE_POWER_LOW = 1, ///< Use Lite Backend with low power mode
LITE_POWER_FULL = 2, ///< Use Lite Backend with full power mode
LITE_POWER_NO_BIND = 3, ///< Use Lite Backend with no bind power mode
LITE_POWER_RAND_HIGH = 4, ///< Use Lite Backend with rand high mode
LITE_POWER_RAND_LOW = 5 ///< Use Lite Backend with rand low power mode
};
FD_ENUM(FD_C_ResultType){
UNKNOWN_RESULT,
CLASSIFY,
DETECTION,
SEGMENTATION,
OCR,
MOT,
FACE_DETECTION,
FACE_ALIGNMENT,
FACE_RECOGNITION,
MATTING,
MASK,
KEYPOINT_DETECTION,
HEADPOSE,
};

View File

@@ -58,43 +58,3 @@
typedef int8_t FD_C_Bool;
#define TRUE 1
#define FALSE 0
#define FD_ENUM(type) \
typedef int32_t type; \
enum
FD_ENUM(FD_C_ModelFormat){
AUTOREC, ///< Auto recognize the model format by model file name
PADDLE, ///< Model with paddlepaddle format
ONNX, ///< Model with ONNX format
RKNN, ///< Model with RKNN format
TORCHSCRIPT, ///< Model with TorchScript format
SOPHGO, ///< Model with SOPHGO format
};
FD_ENUM(FD_C_rknpu2_CpuName){
RK356X = 0, /* run on RK356X. */
RK3588 = 1, /* default,run on RK3588. */
UNDEFINED,
};
FD_ENUM(FD_C_rknpu2_CoreMask){
RKNN_NPU_CORE_AUTO = 0, //< default, run on NPU core randomly.
RKNN_NPU_CORE_0 = 1, //< run on NPU core 0.
RKNN_NPU_CORE_1 = 2, //< run on NPU core 1.
RKNN_NPU_CORE_2 = 4, //< run on NPU core 2.
RKNN_NPU_CORE_0_1 = RKNN_NPU_CORE_0 |
RKNN_NPU_CORE_1, //< run on NPU core 1 and core 2.
RKNN_NPU_CORE_0_1_2 = RKNN_NPU_CORE_0_1 |
RKNN_NPU_CORE_2, //< run on NPU core 1 and core 2.
RKNN_NPU_CORE_UNDEFINED,
};
FD_ENUM(FD_C_LitePowerMode){
LITE_POWER_HIGH = 0, ///< Use Lite Backend with high power mode
LITE_POWER_LOW = 1, ///< Use Lite Backend with low power mode
LITE_POWER_FULL = 2, ///< Use Lite Backend with full power mode
LITE_POWER_NO_BIND = 3, ///< Use Lite Backend with no bind power mode
LITE_POWER_RAND_HIGH = 4, ///< Use Lite Backend with rand high mode
LITE_POWER_RAND_LOW = 5 ///< Use Lite Backend with rand low power mode
};

View File

@@ -0,0 +1,40 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy_capi/fd_type.h"
#include <opencv2/imgcodecs.hpp>
#include "fastdeploy_capi/fd_common.h"
#ifdef __cplusplus
extern "C" {
#endif
FD_C_Mat FD_C_Imread(const char* imgpath) {
cv::Mat image = cv::imread(imgpath);
return new cv::Mat(image);
}
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img) {
cv::Mat cv_img = *(reinterpret_cast<cv::Mat*>(img));
bool result = cv::imwrite(savepath, cv_img);
return result;
}
void FD_C_DestroyMat(FD_C_Mat mat) { delete reinterpret_cast<cv::Mat*>(mat); }
#ifdef __cplusplus
}
#endif

View File

@@ -17,7 +17,8 @@
#include <stdint.h>
#include <stdio.h>
#include "fastdeploy_capi/fd_common.h" // NOLINT
#include "fastdeploy_capi/enum_variables.h"
#include "fastdeploy_capi/fd_common.h"
typedef struct FD_C_OneDimArrayUint8 {
size_t size;
@@ -65,3 +66,19 @@ typedef struct FD_C_TwoDimArrayFloat {
} FD_C_TwoDimArrayFloat; // std::vector<std::vector<float>>
typedef void* FD_C_Mat;
#ifdef __cplusplus
extern "C" {
#endif
FASTDEPLOY_CAPI_EXPORT extern __fd_give FD_C_Mat
FD_C_Imread(const char* imgpath);
FASTDEPLOY_CAPI_EXPORT extern FD_C_Bool FD_C_Imwrite(const char* savepath,
__fd_keep FD_C_Mat);
FASTDEPLOY_CAPI_EXPORT extern void FD_C_DestroyMat(__fd_take FD_C_Mat mat);
#ifdef __cplusplus
}
#endif

View File

@@ -17,7 +17,9 @@
#include "fastdeploy/utils/utils.h"
#include "fastdeploy_capi/types_internal.h"
#ifdef __cplusplus
extern "C" {
#endif
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper() {
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper =
@@ -28,7 +30,7 @@ FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper() {
return fd_c_runtime_option_wrapper;
}
void FD_C_DestroyRuntimeOption(
void FD_C_DestroyRuntimeOptionWrapper(
__fd_take FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper) {
delete fd_c_runtime_option_wrapper;
}
@@ -404,15 +406,6 @@ void FD_C_RuntimeOptionWrapperUseIpu(
batches_per_step);
}
void FD_C_RuntimeOptionWrapperSetIpuConfig(
__fd_keep FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
FD_C_Bool enable_fp16, int replica_num, float available_memory_proportion,
FD_C_Bool enable_half_partial) {
auto& runtime_option = CHECK_AND_CONVERT_FD_TYPE(RuntimeOptionWrapper,
fd_c_runtime_option_wrapper);
runtime_option->SetIpuConfig(enable_fp16, replica_num,
available_memory_proportion,
enable_half_partial);
#ifdef __cplusplus
}
} // extern "C"
#endif

View File

@@ -14,9 +14,7 @@
#pragma once
#include <memory>
#include "fastdeploy_capi/fd_common.h"
#include "fastdeploy_capi/fd_type.h"
typedef struct FD_C_RuntimeOptionWrapper FD_C_RuntimeOptionWrapper;
@@ -499,19 +497,6 @@ FASTDEPLOY_CAPI_EXPORT extern void FD_C_RuntimeOptionWrapperUseIpu(
int device_num, int micro_batch_size, FD_C_Bool enable_pipelining,
int batches_per_step);
/** \brief Set IPU config.
*
* \param[in] fd_c_runtime_option_wrapper pointer to FD_C_RuntimeOptionWrapper object
* \param[in] enable_fp16 enable fp16.
* \param[in] replica_num the number of graph replication.
* \param[in] available_memory_proportion the available memory proportion for matmul/conv.
* \param[in] enable_half_partial enable fp16 partial for matmul, only work with fp16.
*/
FASTDEPLOY_CAPI_EXPORT extern void FD_C_RuntimeOptionWrapperSetIpuConfig(
__fd_keep FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
FD_C_Bool enable_fp16, int replica_num, float available_memory_proportion,
FD_C_Bool enable_half_partial);
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -0,0 +1,26 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy_capi/config.h"
#ifdef ENABLE_VISION
#include "fastdeploy_capi/vision/classification/ppcls/model.h"
#include "fastdeploy_capi/vision/detection/ppdet/model.h"
#include "fastdeploy_capi/vision/result.h"
#include "fastdeploy_capi/vision/visualize.h"
#endif
#include "fastdeploy_capi/fd_type.h"
#include "fastdeploy_capi/runtime_option.h"

View File

@@ -16,7 +16,9 @@
#include "fastdeploy_capi/types_internal.h"
#ifdef __cplusplus
extern "C" {
#endif
FD_C_PaddleClasModelWrapper* FD_C_CreatePaddleClasModelWrapper(
const char* model_file, const char* params_file, const char* config_file,
@@ -50,4 +52,7 @@ FD_C_Bool FD_C_PaddleClasModelWrapperPredict(
ClassifyResultWrapper, fd_c_classify_result_wrapper);
return paddleclas_model->Predict(im, classify_result.get());
}
#ifdef __cplusplus
}
#endif

View File

@@ -17,7 +17,9 @@
#include "fastdeploy_capi/types_internal.h"
#include "fastdeploy_capi/vision/visualize.h"
#ifdef __cplusplus
extern "C" {
#endif
FD_C_PPYOLOEWrapper* FD_C_CreatesPPYOLOEWrapper(
const char* model_file, const char* params_file, const char* config_file,
@@ -50,4 +52,7 @@ FD_C_Bool FD_C_PPYOLOEWrapperPredict(
DetectionResultWrapper, fd_c_detection_result_wrapper);
return ppyoloe_model->Predict(im, detection_result.get());
}
#ifdef __cplusplus
}
#endif

View File

@@ -17,7 +17,9 @@
#include "fastdeploy/utils/utils.h"
#include "fastdeploy_capi/types_internal.h"
#ifdef __cplusplus
extern "C" {
#endif
// Classification Results
@@ -235,4 +237,6 @@ FD_C_DetectionResultWrapper* FD_C_CreateDetectionResultWrapperFromData(
return fd_c_detection_result_wrapper;
}
#ifdef __cplusplus
}
#endif

View File

@@ -24,22 +24,6 @@ typedef struct FD_C_DetectionResultWrapper FD_C_DetectionResultWrapper;
extern "C" {
#endif
FD_ENUM(FD_C_ResultType){
UNKNOWN_RESULT,
CLASSIFY,
DETECTION,
SEGMENTATION,
OCR,
MOT,
FACE_DETECTION,
FACE_ALIGNMENT,
FACE_RECOGNITION,
MATTING,
MASK,
KEYPOINT_DETECTION,
HEADPOSE,
};
typedef struct FD_C_ClassifyResult {
FD_C_OneDimArrayInt32 label_ids;
FD_C_OneDimArrayFloat scores;

View File

@@ -17,7 +17,9 @@
#include "fastdeploy/vision/visualize/visualize.h"
#include "fastdeploy_capi/types_internal.h"
#ifdef __cplusplus
extern "C" {
#endif
FD_C_Mat FD_C_VisDetection(FD_C_Mat im,
FD_C_DetectionResult* fd_c_detection_result,
@@ -32,4 +34,6 @@ FD_C_Mat FD_C_VisDetection(FD_C_Mat im,
line_size, font_size);
return new cv::Mat(result);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,13 @@
PROJECT(infer_demo C)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_ppyoloe_demo ${PROJECT_SOURCE_DIR}/infer_ppyoloe.c)
target_link_libraries(infer_ppyoloe_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,200 @@
English | [简体中文](README_CN.md)
# PaddleDetection C Deployment Example
This directory provides examples that `infer_xxx.c` fast finishes the deployment of PaddleDetection models, including PPYOLOE on CPU/GPU.
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
```bash
ppyoloe is taken as an example for inference deployment
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download the PPYOLOE model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# CPU inference
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
# GPU inference
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
```
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md)
## PaddleDetection C Interface
### RuntimeOption
```c
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
```
> Create a RuntimeOption object, and return a pointer to manipulate it.
>
> **Return**
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
```c
void FD_C_RuntimeOptionWrapperUseCpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
```
> Enable Cpu inference.
>
> **Params**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
```c
void FD_C_RuntimeOptionWrapperUseGpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
int gpu_id)
```
> Enable Gpu inference.
>
> **Params**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
> * **gpu_id**(int): gpu id
### Model
```c
FD_C_PPYOLOEWrapper* FD_C_CreatesPPYOLOEWrapper(
const char* model_file, const char* params_file, const char* config_file,
FD_C_RuntimeOptionWrapper* runtime_option,
const FD_C_ModelFormat model_format)
```
> Create a PPYOLOE model object, and return a pointer to manipulate it.
>
> **Params**
>
> * **model_file**(const char*): Model file path
> * **params_file**(const char*): Parameter file path
> * **config_file**(const char*): Configuration file path, which is the deployment yaml file exported by PaddleDetection
> * **runtime_option**(FD_C_RuntimeOptionWrapper*): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(FD_C_ModelFormat): Model format. Paddle format by default
>
> **Return**
> * **fd_c_ppyoloe_wrapper**(FD_C_PPYOLOEWrapper*): Pointer to manipulate PPYOLOE object.
#### Read and write image
```c
FD_C_Mat FD_C_Imread(const char* imgpath)
```
> Read an image, and return a pointer to cv::Mat.
>
> **Params**
>
> * **imgpath**(const char*): image path
>
> **Return**
>
> * **imgmat**(FD_C_Mat): pointer to cv::Mat object which holds the image.
```c
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
```
> Write image to a file.
>
> **Params**
>
> * **savepath**(const char*): save path
> * **img**(FD_C_Mat): pointer to cv::Mat object
>
> **Return**
>
> * **result**(FD_C_Bool): bool to indicate success or failure
#### Prediction
```c
FD_C_Bool FD_C_PPYOLOEWrapperPredict(
__fd_take FD_C_PPYOLOEWrapper* fd_c_ppyoloe_wrapper, FD_C_Mat img,
FD_C_DetectionResultWrapper* fd_c_detection_result_wrapper)
```
>
> Predict an image, and generate detection result.
>
> **Params**
> * **fd_c_ppyoloe_wrapper**(FD_C_PPYOLOEWrapper*): pointer to manipulate PPYOLOE object
> * **img**FD_C_Mat: pointer to cv::Mat object, which can be obained by FD_C_Imread interface
> * **result**FD_C_DetectionResultWrapper*): Detection result, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for DetectionResult
#### Result
```c
FD_C_DetectionResultWrapper* FD_C_CreateDetectionResultWrapper();
```
>
> Create a DetectionResult object to keep the detection resultreturn a pointer to manipulate it.
>
> **Return**
> * **fd_c_detection_result_wrapper**(FD_C_DetectionResultWrapper*): pointer to manipulate DetectionResult object
```c
FD_C_DetectionResult* FD_C_DetectionResultWrapperGetData(
FD_C_DetectionResultWrapper* fd_c_detection_result_wrapper)
```
>
> Get the C DetectionResult structure from FD_C_DetectionResultWrapper, which can access the fileds directly.
>
> **Params**
> * **fd_c_detection_result_wrapper**(FD_C_DetectionResultWrapper*): pointer to manipulate DetectionResult object
>
> **Return**
> * **fd_c_detection_result**(FD_C_DetectionResult*): pointer to C DetectionResult structure
```c
FD_C_Mat FD_C_VisDetection(FD_C_Mat im, FD_C_DetectionResult* fd_detection_result,
float score_threshold, int line_size, float font_size);
```
>
> Visualize detection results and return visualization image.
>
> **Params**
> * **im**(FD_C_Mat): pointer to input image
> * **fd_detection_result**(FD_C_DetectionResult*): pointer to C DetectionResult structure
> * **score_threshold**(float): score threshold
> * **line_size**(int): line size
> * **font_size**(float): font size
>
> **Return**
> * **vis_im**(FD_C_Mat): pointer to visualization image.
- [Model Description](../../)
- [Python Deployment](../python)
- [Vision Model prediction results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,204 @@
[English](README.md) | 简体中文
# PaddleDetection C 部署示例
本目录下提供`infer_xxx.c`来调用C API快速完成PaddleDetection模型PPYOLOE在CPU/GPU上部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
```bash
以ppyoloe为例进行推理部署
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载PPYOLOE模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# CPU推理
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
# GPU推理
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
## PaddleDetection C API接口
### 配置
```c
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
```
> 创建一个RuntimeOption的配置对象并且返回操作它的指针。
>
> **返回**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
```c
void FD_C_RuntimeOptionWrapperUseCpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
```
> 开启CPU推理
>
> **参数**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
```c
void FD_C_RuntimeOptionWrapperUseGpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
int gpu_id)
```
> 开启GPU推理
>
> **参数**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
> * **gpu_id**(int): 显卡号
### 模型
```c
FD_C_PPYOLOEWrapper* FD_C_CreatesPPYOLOEWrapper(
const char* model_file, const char* params_file, const char* config_file,
FD_C_RuntimeOptionWrapper* runtime_option,
const FD_C_ModelFormat model_format)
```
> 创建一个PPYOLOE的模型并且返回操作它的指针。
>
> **参数**
>
> * **model_file**(const char*): 模型文件路径
> * **params_file**(const char*): 参数文件路径
> * **config_file**(const char*): 配置文件路径即PaddleDetection导出的部署yaml文件
> * **runtime_option**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption的指针表示后端推理配置
> * **model_format**(FD_C_ModelFormat): 模型格式
>
> **返回**
> * **fd_c_ppyoloe_wrapper**(FD_C_PPYOLOEWrapper*): 指向PPYOLOE模型对象的指针
#### 读写图像
```c
FD_C_Mat FD_C_Imread(const char* imgpath)
```
> 读取一个图像并且返回cv::Mat的指针。
>
> **参数**
>
> * **imgpath**(const char*): 图像文件路径
>
> **返回**
>
> * **imgmat**(FD_C_Mat): 指向图像数据cv::Mat的指针。
```c
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
```
> 将图像写入文件中。
>
> **参数**
>
> * **savepath**(const char*): 保存图像的路径
> * **img**(FD_C_Mat): 指向图像数据的指针
>
> **返回**
>
> * **result**(FD_C_Bool): 表示操作是否成功
#### Predict函数
```c
FD_C_Bool FD_C_PPYOLOEWrapperPredict(
__fd_take FD_C_PPYOLOEWrapper* fd_c_ppyoloe_wrapper, FD_C_Mat img,
FD_C_DetectionResultWrapper* fd_c_detection_result_wrapper)
```
>
> 模型预测接口,输入图像直接并生成检测结果。
>
> **参数**
> * **fd_c_ppyoloe_wrapper**(FD_C_PPYOLOEWrapper*): 指向PPYOLOE模型的指针
> * **img**FD_C_Mat: 输入图像的指针指向cv::Mat对象可以调用FD_C_Imread读取图像获取
> * **result**FD_C_DetectionResultWrapper*): 指向检测结果的指针,检测结果包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
#### Predict结果
```c
FD_C_DetectionResultWrapper* FD_C_CreateDetectionResultWrapper();
```
>
> 创建一个DetectionResult对象用来保存推理的结果并返回所创建的DetectionResult对象的指针。
>
> **返回**
> * **fd_c_detection_result_wrapper**(FD_C_DetectionResultWrapper*): 指向DetectionResult对象的指针
```c
FD_C_DetectionResult* FD_C_DetectionResultWrapperGetData(
FD_C_DetectionResultWrapper* fd_c_detection_result_wrapper)
```
>
> 从DetectionResult对象中提取纯C结构的DetectionResult结果并返回结构指针通过该指针可直接返回结构中的字段。
>
> **参数**
> * **fd_c_detection_result_wrapper**(FD_C_DetectionResultWrapper*): 指向DetectionResult对象的指针
>
> **返回**
> * **fd_c_detection_result**(FD_C_DetectionResult*): 指向纯C结构的DetectionResult的指针
```c
FD_C_Mat FD_C_VisDetection(FD_C_Mat im, FD_C_DetectionResult* fd_detection_result,
float score_threshold, int line_size, float font_size);
```
>
> 对检测结果进行可视化,返回可视化的图像。
>
> **参数**
> * **im**(FD_C_Mat): 指向输入图像的指针
> * **fd_detection_result**(FD_C_DetectionResult*): 指向纯C结构DetectionResult的指针
> * **score_threshold**(float): 检测阈值
> * **line_size**(int): 检测框线大小
> * **font_size**(float): 检测框字体大小
>
> **返回**
> * **vis_im**(FD_C_Mat): 指向可视化图像的指针
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,124 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include "fastdeploy_capi/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const char* model_dir, const char* image_file) {
char model_file[100];
char params_file[100];
char config_file[100];
int max_size = 99;
snprintf(model_file, max_size, "%s%c%s", model_dir, sep, "model.pdmodel");
snprintf(params_file, max_size, "%s%c%s", model_dir, sep, "model.pdiparams");
snprintf(config_file, max_size, "%s%c%s", model_dir, sep, "infer_cfg.yml");
FD_C_RuntimeOptionWrapper* option = FD_C_CreateRuntimeOptionWrapper();
FD_C_RuntimeOptionWrapperUseCpu(option);
FD_C_PPYOLOEWrapper* model = FD_C_CreatesPPYOLOEWrapper(
model_file, params_file, config_file, option, PADDLE);
FD_C_Mat im = FD_C_Imread(image_file);
FD_C_DetectionResultWrapper* result_wrapper =
FD_C_CreateDetectionResultWrapper();
if (!FD_C_PPYOLOEWrapperPredict(model, im, result_wrapper)) {
printf("Failed to predict.\n");
return;
}
FD_C_DetectionResult* result =
FD_C_DetectionResultWrapperGetData(result_wrapper);
FD_C_Mat vis_im = FD_C_VisDetection(im, result, 0.5, 1, 0.5);
FD_C_Imwrite("vis_result.jpg", vis_im);
printf("Visualized result saved in ./vis_result.jpg\n");
FD_C_DestroyRuntimeOptionWrapper(option);
FD_C_DestroyPPYOLOEWrapper(model);
FD_C_DestroyDetectionResultWrapper(result_wrapper);
FD_C_DestroyDetectionResult(result);
FD_C_DestroyMat(im);
FD_C_DestroyMat(vis_im);
}
void GpuInfer(const char* model_dir, const char* image_file) {
char model_file[100];
char params_file[100];
char config_file[100];
int max_size = 99;
snprintf(model_file, max_size, "%s%c%s", model_dir, sep, "model.pdmodel");
snprintf(params_file, max_size, "%s%c%s", model_dir, sep, "model.pdiparams");
snprintf(config_file, max_size, "%s%c%s", model_dir, sep, "infer_cfg.yml");
FD_C_RuntimeOptionWrapper* option = FD_C_CreateRuntimeOptionWrapper();
FD_C_RuntimeOptionWrapperUseGpu(option, 0);
FD_C_PPYOLOEWrapper* model = FD_C_CreatesPPYOLOEWrapper(
model_file, params_file, config_file, option, PADDLE);
FD_C_Mat im = FD_C_Imread(image_file);
FD_C_DetectionResultWrapper* result_wrapper =
FD_C_CreateDetectionResultWrapper();
if (!FD_C_PPYOLOEWrapperPredict(model, im, result_wrapper)) {
printf("Failed to predict.\n");
return;
}
FD_C_DetectionResult* result =
FD_C_DetectionResultWrapperGetData(result_wrapper);
FD_C_Mat vis_im = FD_C_VisDetection(im, result, 0.5, 1, 0.5);
FD_C_Imwrite("vis_result.jpg", vis_im);
printf("Visualized result saved in ./vis_result.jpg\n");
FD_C_DestroyRuntimeOptionWrapper(option);
FD_C_DestroyPPYOLOEWrapper(model);
FD_C_DestroyDetectionResultWrapper(result_wrapper);
FD_C_DestroyDetectionResult(result);
FD_C_DestroyMat(im);
FD_C_DestroyMat(vis_im);
}
int main(int argc, char* argv[]) {
if (argc < 4) {
printf(
"Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
"\n");
printf(
"The data type of run_option is int, 0: run with cpu; 1: run with gpu"
"\n");
return -1;
}
if (atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
}
return 0;
}