mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
[Feature] support flash_mask_attention backend (#5134)
* [Feature] suppert flash_mask_attention backend * fix unittest * clean code
This commit is contained in:
@@ -18,6 +18,7 @@ from .attention_selecter import get_attention_backend
|
||||
from .base_attention_backend import AttentionBackend
|
||||
from .block_multihead_attn_backend import BlockAttentionBackend
|
||||
from .flash_attn_backend import FlashAttentionBackend
|
||||
from .flash_mask_attn_backend import FlashMaskAttentionBackend
|
||||
from .iluvatar_attn_backend import IluvatarAttnBackend
|
||||
from .mla_attention_backend import MLAAttentionBackend
|
||||
from .moba_attention_backend import PlasAttentionBackend
|
||||
@@ -36,4 +37,5 @@ __all__ = [
|
||||
"BlockAttentionBackend",
|
||||
"Attention",
|
||||
"PlasAttentionBackend",
|
||||
"FlashMaskAttentionBackend",
|
||||
]
|
||||
|
||||
@@ -0,0 +1,316 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
|
||||
AttentionBackend,
|
||||
AttentionMetadata,
|
||||
)
|
||||
from fastdeploy.model_executor.layers.attention.ops import (
|
||||
flash_mask_attention,
|
||||
get_block_shape_and_split_kv_block,
|
||||
gqa_rope_write_cache,
|
||||
init_kv_signal_per_query,
|
||||
init_signal_layerwise,
|
||||
open_shm_and_get_meta_signal,
|
||||
pre_cache_len_concat,
|
||||
)
|
||||
from fastdeploy.model_executor.layers.attention.utils import init_rank_and_device_id
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
from fastdeploy.platforms import current_platform
|
||||
|
||||
if current_platform.is_cuda():
|
||||
from fastdeploy.model_executor.ops.gpu import merge_prefill_decode_output
|
||||
else:
|
||||
merge_prefill_decode_output = None
|
||||
|
||||
import os
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlashMaskAttentionMetadata(AttentionMetadata):
|
||||
"""
|
||||
FlashAttentionMetadata
|
||||
"""
|
||||
|
||||
rotary_embs: Optional[paddle.Tensor] = None
|
||||
block_tables: Optional[paddle.Tensor] = None
|
||||
|
||||
cu_seqlens_q: paddle.Tensor = None
|
||||
cu_seqlens_k: paddle.Tensor = None
|
||||
max_seqlen_q: int = 0
|
||||
max_seqlen_k: int = 0
|
||||
|
||||
pre_cache_batch_ids = None
|
||||
pre_cache_tile_ids_per_batch = None
|
||||
pre_cache_num_blocks_cpu = None
|
||||
kv_token_num_cpu = None
|
||||
|
||||
# pd_disaggregation
|
||||
kv_signal_metadata: Optional[paddle.Tensor] = None
|
||||
kv_signal_data_list: List[Optional[paddle.Tensor]] = field(default_factory=list)
|
||||
|
||||
_fuse_kernel_compute_dtype: str = "bf16"
|
||||
_dtype: paddle.dtype = paddle.bfloat16
|
||||
|
||||
max_len_tensor_cpu: paddle.Tensor = None
|
||||
max_len_tensor_cpu_decoder: paddle.Tensor = None
|
||||
|
||||
|
||||
class FlashMaskAttentionBackend(AttentionBackend):
|
||||
"""
|
||||
FlashAttentionBackend backend implementation
|
||||
"""
|
||||
|
||||
__infer_dynamic_dims_fields__ = ["attention_metadata"]
|
||||
attention_metadata: FlashMaskAttentionMetadata
|
||||
flash_attn_func: callable = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fd_config: FDConfig,
|
||||
kv_num_heads: int,
|
||||
num_heads: int,
|
||||
head_dim: int,
|
||||
encoder_block_shape_q: int = -1,
|
||||
decoder_block_shape_q: int = -1,
|
||||
):
|
||||
"""
|
||||
FlashAttentionBackend __init__
|
||||
"""
|
||||
super().__init__()
|
||||
self.attention_metadata: FlashMaskAttentionMetadata = None
|
||||
self.max_seq_len = fd_config.model_config.max_model_len
|
||||
self.causal = getattr(fd_config.model_config, "causal", True)
|
||||
|
||||
self.kv_num_heads = kv_num_heads
|
||||
self.num_heads = num_heads
|
||||
self.group_size: int = self.num_heads // self.kv_num_heads
|
||||
self.head_dim = fd_config.model_config.head_dim
|
||||
self.attn_outputsize_tp = self.num_heads * self.head_dim
|
||||
self.block_size = fd_config.cache_config.block_size
|
||||
self.num_layers: int = fd_config.model_config.num_hidden_layers
|
||||
self.encoder_block_shape_q: int = encoder_block_shape_q
|
||||
self.decoder_block_shape_q: int = decoder_block_shape_q
|
||||
|
||||
self.speculative_method = fd_config.speculative_config.method
|
||||
self.use_speculate = self.speculative_method is not None
|
||||
self.speculate_max_draft_token_num = fd_config.speculative_config.num_speculative_tokens
|
||||
self.keep_pd_step_flag: bool = fd_config.speculative_config.model_type == "mtp"
|
||||
self.num_layers_draft_model: int = int(fd_config.speculative_config.method in ["mtp"])
|
||||
|
||||
self.pd_disaggregation_mode: str = fd_config.parallel_config.pd_disaggregation_mode
|
||||
|
||||
self.start_layer_index: int = fd_config.model_config.start_layer_index
|
||||
|
||||
if fd_config.parallel_config.expert_parallel_rank is None:
|
||||
fd_config.parallel_config.expert_parallel_rank = 0
|
||||
|
||||
self.rank, self.device_id = init_rank_and_device_id(fd_config)
|
||||
|
||||
self.rope_3d: bool = getattr(fd_config.model_config, "rope_3d", False) or getattr(
|
||||
fd_config.model_config, "use_3d_rope", False
|
||||
)
|
||||
if fd_config.speculative_config.model_type != "main":
|
||||
self.rope_3d = False
|
||||
self.max_partition_size: int = int(os.getenv("FLAGS_max_partition_size", "32768"))
|
||||
self.zero_seq_enc_lens_for_decode = paddle.zeros(
|
||||
shape=[fd_config.scheduler_config.max_num_seqs, 1], dtype=paddle.int32
|
||||
)
|
||||
|
||||
def get_attntion_meta(self):
|
||||
"""get_attntion_meta"""
|
||||
return self.attention_metadata
|
||||
|
||||
def get_kv_cache_shape(
|
||||
self,
|
||||
max_num_blocks: int,
|
||||
kv_cache_quant_type: str = None,
|
||||
):
|
||||
"""
|
||||
Calculate kv cache shape
|
||||
"""
|
||||
key_cache_shape = [max_num_blocks, self.kv_num_heads, self.block_size, self.head_dim]
|
||||
value_cache_shape = [max_num_blocks, self.kv_num_heads, self.block_size, self.head_dim]
|
||||
if kv_cache_quant_type is not None and kv_cache_quant_type == "int4_zp":
|
||||
key_cache_shape = [
|
||||
max_num_blocks,
|
||||
self.kv_num_heads,
|
||||
self.block_size,
|
||||
self.head_dim // 2,
|
||||
]
|
||||
value_cache_shape = [
|
||||
max_num_blocks,
|
||||
self.kv_num_heads,
|
||||
self.block_size,
|
||||
self.head_dim // 2,
|
||||
]
|
||||
return key_cache_shape, value_cache_shape
|
||||
|
||||
def init_attention_metadata(self, forward_meta: ForwardMeta):
|
||||
metadata = FlashMaskAttentionMetadata()
|
||||
metadata.cu_seqlens_q = forward_meta.cu_seqlens_q
|
||||
metadata.rotary_embs = forward_meta.rotary_embs
|
||||
metadata.block_tables = forward_meta.block_tables
|
||||
get_block_shape_and_split_kv_block(
|
||||
forward_meta.seq_lens_encoder,
|
||||
forward_meta.seq_lens_decoder,
|
||||
forward_meta.seq_lens_this_time,
|
||||
forward_meta.decoder_batch_ids,
|
||||
forward_meta.decoder_tile_ids_per_batch,
|
||||
forward_meta.decoder_num_blocks_cpu,
|
||||
forward_meta.decoder_num_blocks_device,
|
||||
forward_meta.decoder_chunk_size_device,
|
||||
forward_meta.max_len_tensor_cpu,
|
||||
forward_meta.encoder_batch_ids,
|
||||
forward_meta.encoder_tile_ids_per_batch,
|
||||
forward_meta.encoder_num_blocks_x_cpu,
|
||||
forward_meta.kv_batch_ids,
|
||||
forward_meta.kv_tile_ids_per_batch,
|
||||
forward_meta.kv_num_blocks_x_cpu,
|
||||
self.encoder_block_shape_q,
|
||||
self.decoder_block_shape_q,
|
||||
self.group_size,
|
||||
self.block_size,
|
||||
)
|
||||
|
||||
(
|
||||
metadata.cu_seqlens_k,
|
||||
metadata.pre_cache_batch_ids,
|
||||
metadata.pre_cache_tile_ids_per_batch,
|
||||
metadata.pre_cache_num_blocks_cpu,
|
||||
metadata.kv_token_num_cpu,
|
||||
) = pre_cache_len_concat(
|
||||
forward_meta.seq_lens_decoder,
|
||||
forward_meta.seq_lens_this_time,
|
||||
forward_meta.max_len_tensor_cpu[2],
|
||||
self.block_size,
|
||||
)
|
||||
|
||||
# pd_disaggregation
|
||||
metadata.kv_signal_data_list = [None] * self.num_layers
|
||||
if self.pd_disaggregation_mode == "per_chunk":
|
||||
if not self.keep_pd_step_flag and not forward_meta.is_dummy_or_profile_run:
|
||||
init_kv_signal_per_query(
|
||||
forward_meta.seq_lens_encoder,
|
||||
forward_meta.seq_lens_this_time,
|
||||
forward_meta.seq_lens_decoder,
|
||||
self.rank,
|
||||
self.num_layers + self.num_layers_draft_model,
|
||||
)
|
||||
elif self.pd_disaggregation_mode == "per_query":
|
||||
metadata.kv_signal_metadata = open_shm_and_get_meta_signal(
|
||||
self.rank, int(self.device_id), self.keep_pd_step_flag
|
||||
)
|
||||
|
||||
if metadata._dtype == "bfloat16":
|
||||
metadata._fuse_kernel_compute_dtype = "bf16"
|
||||
elif metadata._dtype == "float16":
|
||||
metadata._fuse_kernel_compute_dtype = "fp16"
|
||||
elif metadata._dtype == "float32":
|
||||
metadata._fuse_kernel_compute_dtype = "fp32"
|
||||
|
||||
metadata.max_len_tensor_cpu = forward_meta.max_len_tensor_cpu
|
||||
metadata.max_len_tensor_cpu_decoder = paddle.clone(metadata.max_len_tensor_cpu)
|
||||
metadata.max_len_tensor_cpu_decoder[1] = 0
|
||||
|
||||
self.attention_metadata = metadata
|
||||
|
||||
def forward_mixed(
|
||||
self,
|
||||
q: paddle.Tensor,
|
||||
k: paddle.Tensor,
|
||||
v: paddle.Tensor,
|
||||
qkv: paddle.Tensor,
|
||||
compressed_kv: paddle.Tensor,
|
||||
k_pe: paddle.Tensor,
|
||||
layer: Attention,
|
||||
forward_meta: ForwardMeta,
|
||||
):
|
||||
metadata = self.attention_metadata
|
||||
|
||||
if self.pd_disaggregation_mode == "per_query":
|
||||
metadata.kv_signal_data_list[layer.layer_id] = init_signal_layerwise(
|
||||
metadata.kv_signal_metadata,
|
||||
layer.layer_id + self.start_layer_index,
|
||||
)
|
||||
|
||||
if metadata.max_len_tensor_cpu[1] > 0:
|
||||
res_encoder = paddle.zeros([qkv.shape[0], self.num_heads * self.head_dim], dtype=qkv.dtype)
|
||||
q, k, v, _ = gqa_rope_write_cache(
|
||||
qkv,
|
||||
forward_meta.caches[2 * layer.layer_id],
|
||||
forward_meta.caches[2 * layer.layer_id + 1],
|
||||
metadata.cu_seqlens_q,
|
||||
metadata.cu_seqlens_k,
|
||||
metadata.rotary_embs,
|
||||
forward_meta.seq_lens_this_time,
|
||||
forward_meta.seq_lens_encoder,
|
||||
forward_meta.seq_lens_decoder,
|
||||
forward_meta.batch_id_per_token,
|
||||
metadata.block_tables,
|
||||
forward_meta.kv_batch_ids,
|
||||
forward_meta.kv_tile_ids_per_batch,
|
||||
forward_meta.kv_num_blocks_x_cpu,
|
||||
metadata.pre_cache_batch_ids,
|
||||
metadata.pre_cache_tile_ids_per_batch,
|
||||
metadata.pre_cache_num_blocks_cpu,
|
||||
getattr(layer, "q_norm_weight", None),
|
||||
getattr(layer, "k_norm_weight", None),
|
||||
getattr(layer, "cache_k_scale", None),
|
||||
getattr(layer, "cache_v_scale", None),
|
||||
getattr(layer, "cache_k_out_scale", None),
|
||||
getattr(layer, "cache_v_out_scale", None),
|
||||
getattr(layer, "cache_k_zp", None),
|
||||
getattr(layer, "cache_v_zp", None),
|
||||
metadata.kv_signal_data_list[layer.layer_id],
|
||||
metadata.kv_token_num_cpu[0].item(),
|
||||
self.max_seq_len,
|
||||
getattr(layer, "rms_norm_eps", 1e-6),
|
||||
getattr(layer, "cache_quant_type_str", "none"),
|
||||
self.rope_3d,
|
||||
)
|
||||
|
||||
flash_mask_attention(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
metadata.cu_seqlens_q,
|
||||
metadata.cu_seqlens_k,
|
||||
forward_meta.seq_lens_encoder,
|
||||
res_encoder,
|
||||
forward_meta.attn_mask_offsets,
|
||||
self.num_heads,
|
||||
self.kv_num_heads,
|
||||
self.head_dim,
|
||||
self.max_seq_len,
|
||||
q.shape[0],
|
||||
k.shape[0],
|
||||
)
|
||||
return res_encoder
|
||||
else:
|
||||
raise NotImplementedError("FlashMaskAttentionBackend is not supported for decode.")
|
||||
@@ -15,6 +15,7 @@
|
||||
"""
|
||||
|
||||
from .append_attention import append_attention, append_attention_with_output
|
||||
from .flash_mask_attention import flash_mask_attention
|
||||
from .get_block_shape_and_split_kv_block import get_block_shape_and_split_kv_block
|
||||
from .gqa_rope_write_cache import gqa_rope_write_cache
|
||||
from .init_kv_signal_per_query import init_kv_signal_per_query
|
||||
@@ -31,4 +32,5 @@ __all__ = [
|
||||
"gqa_rope_write_cache",
|
||||
"pre_cache_len_concat",
|
||||
"init_kv_signal_per_query",
|
||||
"flash_mask_attention",
|
||||
]
|
||||
|
||||
@@ -0,0 +1,60 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy.platforms import current_platform
|
||||
|
||||
|
||||
def flash_mask_attention(
|
||||
q: paddle.Tensor,
|
||||
k: paddle.Tensor,
|
||||
v: paddle.Tensor,
|
||||
cu_seqlens_q: paddle.Tensor,
|
||||
cu_seqlens_k: paddle.Tensor,
|
||||
seq_lens_encoder: paddle.Tensor,
|
||||
attn_out: paddle.Tensor,
|
||||
attn_mask_offsets: Optional[paddle.Tensor] = None,
|
||||
num_heads: int = 0,
|
||||
kv_num_heads: int = 0,
|
||||
head_dim: int = 128,
|
||||
max_seq_len: int = 0,
|
||||
q_token_num: int = 0,
|
||||
kv_token_num: int = 0,
|
||||
):
|
||||
if current_platform.is_cuda():
|
||||
from fastdeploy.model_executor.ops.gpu import flash_mask_attention
|
||||
|
||||
flash_mask_attention(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
cu_seqlens_q,
|
||||
cu_seqlens_k,
|
||||
seq_lens_encoder,
|
||||
attn_out,
|
||||
attn_mask_offsets,
|
||||
num_heads,
|
||||
kv_num_heads,
|
||||
head_dim,
|
||||
max_seq_len,
|
||||
q_token_num,
|
||||
kv_token_num,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
@@ -39,6 +39,8 @@ def gqa_rope_write_cache(
|
||||
cache_batch_ids: paddle.Tensor,
|
||||
cache_tile_ids_per_batch: paddle.Tensor,
|
||||
cache_num_blocks: paddle.Tensor,
|
||||
q_norm_weight: Optional[paddle.Tensor] = None,
|
||||
k_norm_weight: Optional[paddle.Tensor] = None,
|
||||
cache_k_quant_scales: Optional[paddle.Tensor] = None,
|
||||
cache_v_quant_scales: Optional[paddle.Tensor] = None,
|
||||
cache_k_dequant_scales: Optional[paddle.Tensor] = None,
|
||||
@@ -48,6 +50,7 @@ def gqa_rope_write_cache(
|
||||
kv_signal_data: Optional[paddle.Tensor] = None,
|
||||
kv_token_num: int = 1,
|
||||
max_seq_len: int = 0,
|
||||
rms_norm_eps: float = 1e-6,
|
||||
cache_quant_type: str = "none",
|
||||
rope_3d: bool = False,
|
||||
):
|
||||
@@ -72,6 +75,8 @@ def gqa_rope_write_cache(
|
||||
cache_batch_ids,
|
||||
cache_tile_ids_per_batch,
|
||||
cache_num_blocks,
|
||||
q_norm_weight,
|
||||
k_norm_weight,
|
||||
cache_k_quant_scales,
|
||||
cache_v_quant_scales,
|
||||
cache_k_dequant_scales,
|
||||
@@ -81,6 +86,7 @@ def gqa_rope_write_cache(
|
||||
kv_signal_data,
|
||||
kv_token_num,
|
||||
max_seq_len,
|
||||
rms_norm_eps,
|
||||
cache_quant_type,
|
||||
rope_3d,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user