mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
Merge branch 'develop' into add_batch_size_for_uie
This commit is contained in:
0
python/__init__.py
Normal file
0
python/__init__.py
Normal file
@@ -37,3 +37,4 @@ from . import vision
|
||||
from . import pipeline
|
||||
from . import text
|
||||
from .download import download, download_and_decompress, download_model
|
||||
from . import serving
|
||||
|
@@ -263,18 +263,18 @@ class RuntimeOption:
|
||||
return
|
||||
return self._option.use_gpu(device_id)
|
||||
|
||||
def use_xpu(self,
|
||||
device_id=0,
|
||||
l3_workspace_size=16 * 1024 * 1024,
|
||||
locked=False,
|
||||
autotune=True,
|
||||
autotune_file="",
|
||||
precision="int16",
|
||||
adaptive_seqlen=False,
|
||||
enable_multi_stream=False):
|
||||
"""Inference with XPU
|
||||
def use_kunlunxin(self,
|
||||
device_id=0,
|
||||
l3_workspace_size=16 * 1024 * 1024,
|
||||
locked=False,
|
||||
autotune=True,
|
||||
autotune_file="",
|
||||
precision="int16",
|
||||
adaptive_seqlen=False,
|
||||
enable_multi_stream=False):
|
||||
"""Inference with KunlunXin XPU
|
||||
|
||||
:param device_id: (int)The index of XPU will be used for inference, default 0
|
||||
:param device_id: (int)The index of KunlunXin XPU will be used for inference, default 0
|
||||
:param l3_workspace_size: (int)The size of the video memory allocated by the l3 cache, the maximum is 16M, default 16M
|
||||
:param locked: (bool)Whether the allocated L3 cache can be locked. If false, it means that the L3 cache is not locked,
|
||||
and the allocated L3 cache can be shared by multiple models, and multiple models
|
||||
@@ -285,11 +285,11 @@ class RuntimeOption:
|
||||
the algorithm specified in the file will be used and autotune will not be performed again.
|
||||
:param precision: (str)Calculation accuracy of multi_encoder
|
||||
:param adaptive_seqlen: (bool)adaptive_seqlen Is the input of multi_encoder variable length
|
||||
:param enable_multi_stream: (bool)Whether to enable the multi stream of xpu.
|
||||
:param enable_multi_stream: (bool)Whether to enable the multi stream of KunlunXin XPU.
|
||||
"""
|
||||
return self._option.use_xpu(device_id, l3_workspace_size, locked,
|
||||
autotune, autotune_file, precision,
|
||||
adaptive_seqlen, enable_multi_stream)
|
||||
return self._option.use_kunlunxin(device_id, l3_workspace_size, locked,
|
||||
autotune, autotune_file, precision,
|
||||
adaptive_seqlen, enable_multi_stream)
|
||||
|
||||
def use_cpu(self):
|
||||
"""Inference with CPU
|
||||
|
14
python/fastdeploy/serving/__init__.py
Normal file
14
python/fastdeploy/serving/__init__.py
Normal file
@@ -0,0 +1,14 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
16
python/fastdeploy/serving/handler/__init__.py
Normal file
16
python/fastdeploy/serving/handler/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from .base_handler import BaseModelHandler
|
||||
from .vision_model_handler import VisionModelHandler
|
28
python/fastdeploy/serving/handler/base_handler.py
Normal file
28
python/fastdeploy/serving/handler/base_handler.py
Normal file
@@ -0,0 +1,28 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
|
||||
class BaseModelHandler(metaclass=ABCMeta):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def process(cls, predictor, data, parameters):
|
||||
pass
|
||||
|
30
python/fastdeploy/serving/handler/vision_model_handler.py
Normal file
30
python/fastdeploy/serving/handler/vision_model_handler.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .base_handler import BaseModelHandler
|
||||
from ..utils import base64_to_cv2
|
||||
from ...vision.utils import fd_result_to_json
|
||||
|
||||
|
||||
class VisionModelHandler(BaseModelHandler):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@classmethod
|
||||
def process(cls, predictor, data, parameters):
|
||||
# TODO: support batch predict
|
||||
im = base64_to_cv2(data['image'])
|
||||
result = predictor.predict(im)
|
||||
r_str = fd_result_to_json(result)
|
||||
return r_str
|
57
python/fastdeploy/serving/model_manager.py
Normal file
57
python/fastdeploy/serving/model_manager.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# coding:utf-8
|
||||
# copyright (c) 2022 paddlepaddle authors. all rights reserved.
|
||||
#
|
||||
# licensed under the apache license, version 2.0 (the "license"
|
||||
# you may not use this file except in compliance with the license.
|
||||
# you may obtain a copy of the license at
|
||||
#
|
||||
# http://www.apache.org/licenses/license-2.0
|
||||
#
|
||||
# unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the license is distributed on an "as is" basis,
|
||||
# without warranties or conditions of any kind, either express or implied.
|
||||
# see the license for the specific language governing permissions and
|
||||
# limitations under the license.
|
||||
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
# from .predictor import Predictor
|
||||
from .handler import BaseModelHandler
|
||||
from .utils import lock_predictor
|
||||
|
||||
|
||||
class ModelManager:
|
||||
def __init__(self, model_handler, predictor):
|
||||
self._model_handler = model_handler
|
||||
self._predictors = []
|
||||
self._predictor_locks = []
|
||||
self._register(predictor)
|
||||
|
||||
def _register(self, predictor):
|
||||
# Get the model handler
|
||||
if not issubclass(self._model_handler, BaseModelHandler):
|
||||
raise TypeError(
|
||||
"The model_handler must be subclass of BaseModelHandler, please check the type."
|
||||
)
|
||||
|
||||
# TODO: Create multiple predictors to run on different GPUs or different CPU threads
|
||||
self._predictors.append(predictor)
|
||||
self._predictor_locks.append(threading.Lock())
|
||||
|
||||
def _get_predict_id(self):
|
||||
t = time.time()
|
||||
t = int(round(t * 1000))
|
||||
predictor_id = t % len(self._predictors)
|
||||
logging.info("The predictor id: {} is selected by running the model.".
|
||||
format(predictor_id))
|
||||
return predictor_id
|
||||
|
||||
def predict(self, data, parameters):
|
||||
predictor_id = self._get_predict_id()
|
||||
with lock_predictor(self._predictor_locks[predictor_id]):
|
||||
model_output = self._model_handler.process(
|
||||
self._predictors[predictor_id], data, parameters)
|
||||
return model_output
|
16
python/fastdeploy/serving/router/__init__.py
Normal file
16
python/fastdeploy/serving/router/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from .base_router import BaseRouterManager
|
||||
from .http_router import HttpRouterManager
|
28
python/fastdeploy/serving/router/base_router.py
Normal file
28
python/fastdeploy/serving/router/base_router.py
Normal file
@@ -0,0 +1,28 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
|
||||
|
||||
class BaseRouterManager(abc.ABC):
|
||||
_app = None
|
||||
|
||||
def __init__(self, app):
|
||||
super().__init__()
|
||||
self._app = app
|
||||
|
||||
@abc.abstractmethod
|
||||
def register_models_router(self):
|
||||
return NotImplemented
|
80
python/fastdeploy/serving/router/http_router.py
Normal file
80
python/fastdeploy/serving/router/http_router.py
Normal file
@@ -0,0 +1,80 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import hashlib
|
||||
import typing
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import APIRouter, Request, HTTPException
|
||||
from pydantic import BaseModel, Extra, create_model
|
||||
|
||||
from .base_router import BaseRouterManager
|
||||
|
||||
|
||||
class ResponseBase(BaseModel):
|
||||
text: Optional[str] = None
|
||||
|
||||
|
||||
class RequestBase(BaseModel, extra=Extra.forbid):
|
||||
parameters: Optional[dict] = {}
|
||||
|
||||
|
||||
class HttpRouterManager(BaseRouterManager):
|
||||
def register_models_router(self, task_name):
|
||||
|
||||
# Url path to register the model
|
||||
paths = [f"/{task_name}"]
|
||||
for path in paths:
|
||||
logging.info("FastDeploy Model request [path]={} is genereated.".
|
||||
format(path))
|
||||
|
||||
# Unique name to create the pydantic model
|
||||
unique_name = hashlib.md5(task_name.encode()).hexdigest()
|
||||
|
||||
# Create request model
|
||||
req_model = create_model(
|
||||
"RequestModel" + unique_name,
|
||||
data=(typing.Any, ...),
|
||||
__base__=RequestBase, )
|
||||
|
||||
# Create response model
|
||||
resp_model = create_model(
|
||||
"ResponseModel" + unique_name,
|
||||
result=(typing.Any, ...),
|
||||
__base__=ResponseBase, )
|
||||
|
||||
# Template predict endpoint function to dynamically serve different models
|
||||
def predict(request: Request, inference_request: req_model):
|
||||
try:
|
||||
result = self._app._model_manager.predict(
|
||||
inference_request.data, inference_request.parameters)
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Error occurred while running predict: {str(e)}")
|
||||
return {"result": result}
|
||||
|
||||
# Register the route and add to the app
|
||||
router = APIRouter()
|
||||
for path in paths:
|
||||
router.add_api_route(
|
||||
path,
|
||||
predict,
|
||||
methods=["post"],
|
||||
summary=f"{task_name.title()}",
|
||||
response_model=resp_model,
|
||||
response_model_exclude_unset=True,
|
||||
response_model_exclude_none=True, )
|
||||
self._app.include_router(router)
|
46
python/fastdeploy/serving/server.py
Normal file
46
python/fastdeploy/serving/server.py
Normal file
@@ -0,0 +1,46 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from fastapi import FastAPI
|
||||
from .router import HttpRouterManager
|
||||
from .model_manager import ModelManager
|
||||
|
||||
|
||||
class SimpleServer(FastAPI):
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
Initial function for the FastDeploy SimpleServer.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self._router_manager = HttpRouterManager(self)
|
||||
self._model_manager = None
|
||||
self._service_name = "FastDeploy SimpleServer"
|
||||
self._service_type = None
|
||||
|
||||
def register(self, task_name, model_handler, predictor):
|
||||
"""
|
||||
The register function for the SimpleServer, the main register argrument as follows:
|
||||
|
||||
Args:
|
||||
task_name(str): API URL path.
|
||||
model_handler: To process request data, run predictor,
|
||||
and can also add your custom post processing on top of the predictor result
|
||||
predictor: To run model predict
|
||||
"""
|
||||
self._server_type = "models"
|
||||
model_manager = ModelManager(model_handler, predictor)
|
||||
self._model_manager = model_manager
|
||||
# Register model server router
|
||||
self._router_manager.register_models_router(task_name)
|
40
python/fastdeploy/serving/utils.py
Normal file
40
python/fastdeploy/serving/utils.py
Normal file
@@ -0,0 +1,40 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import contextlib
|
||||
import base64
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def lock_predictor(lock):
|
||||
lock.acquire()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
lock.release()
|
||||
|
||||
|
||||
def cv2_to_base64(image):
|
||||
data = cv2.imencode('.jpg', image)[1]
|
||||
return base64.b64encode(data.tobytes()).decode('utf8')
|
||||
|
||||
|
||||
def base64_to_cv2(b64str):
|
||||
data = base64.b64decode(b64str.encode('utf8'))
|
||||
data = np.fromstring(data, np.uint8)
|
||||
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||
return data
|
@@ -19,6 +19,7 @@ from .contrib.scaled_yolov4 import ScaledYOLOv4
|
||||
from .contrib.nanodet_plus import NanoDetPlus
|
||||
from .contrib.yolox import YOLOX
|
||||
from .contrib.yolov5 import *
|
||||
from .contrib.fastestdet import *
|
||||
from .contrib.yolov5lite import YOLOv5Lite
|
||||
from .contrib.yolov6 import YOLOv6
|
||||
from .contrib.yolov7end2end_trt import YOLOv7End2EndTRT
|
||||
|
149
python/fastdeploy/vision/detection/contrib/fastestdet.py
Normal file
149
python/fastdeploy/vision/detection/contrib/fastestdet.py
Normal file
@@ -0,0 +1,149 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class FastestDetPreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for FastestDet
|
||||
"""
|
||||
self._preprocessor = C.vision.detection.FastestDetPreprocessor()
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for FastestDet
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [352, 352]
|
||||
"""
|
||||
return self._preprocessor.size
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._preprocessor.size = wh
|
||||
|
||||
|
||||
class FastestDetPostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for FastestDet
|
||||
"""
|
||||
self._postprocessor = C.vision.detection.FastestDetPostprocessor()
|
||||
|
||||
def run(self, runtime_results, ims_info):
|
||||
"""Postprocess the runtime results for FastestDet
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:param: ims_info: (list of dict)Record input_shape and output_shape
|
||||
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results, ims_info)
|
||||
|
||||
@property
|
||||
def conf_threshold(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.65
|
||||
"""
|
||||
return self._postprocessor.conf_threshold
|
||||
|
||||
@property
|
||||
def nms_threshold(self):
|
||||
"""
|
||||
nms threshold for postprocessing, default is 0.45
|
||||
"""
|
||||
return self._postprocessor.nms_threshold
|
||||
|
||||
@conf_threshold.setter
|
||||
def conf_threshold(self, conf_threshold):
|
||||
assert isinstance(conf_threshold, float),\
|
||||
"The value to set `conf_threshold` must be type of float."
|
||||
self._postprocessor.conf_threshold = conf_threshold
|
||||
|
||||
@nms_threshold.setter
|
||||
def nms_threshold(self, nms_threshold):
|
||||
assert isinstance(nms_threshold, float),\
|
||||
"The value to set `nms_threshold` must be type of float."
|
||||
self._postprocessor.nms_threshold = nms_threshold
|
||||
|
||||
|
||||
class FastestDet(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a FastestDet model exported by FastestDet.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./FastestDet.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(FastestDet, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.ONNX, "FastestDet only support model format of ModelFormat.ONNX now."
|
||||
self._model = C.vision.detection.FastestDet(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
|
||||
assert self.initialized, "FastestDet initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
"""Detect an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: DetectionResult
|
||||
"""
|
||||
assert input_image is not None, "Input image is None."
|
||||
return self._model.predict(input_image)
|
||||
|
||||
def batch_predict(self, images):
|
||||
assert len(images) == 1,"FastestDet is only support 1 image in batch_predict"
|
||||
"""Classify a batch of input image
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get FastestDetPreprocessor object of the loaded model
|
||||
|
||||
:return FastestDetPreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get FastestDetPostprocessor object of the loaded model
|
||||
|
||||
:return FastestDetPostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
@@ -13,9 +13,4 @@
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from .contrib.adaface import AdaFace
|
||||
from .contrib.arcface import ArcFace
|
||||
from .contrib.cosface import CosFace
|
||||
from .contrib.insightface_rec import InsightFaceRecognitionModel
|
||||
from .contrib.partial_fc import PartialFC
|
||||
from .contrib.vpl import VPL
|
||||
from .contrib import *
|
||||
|
@@ -13,3 +13,5 @@
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from .insightface import *
|
||||
from .adaface import *
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class AdaFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a AdaFace model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./adaface.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(AdaFace, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.AdaFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "AdaFace initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)), \
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2, \
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)), \
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3, \
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)), \
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3, \
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
109
python/fastdeploy/vision/faceid/contrib/adaface/__init__.py
Normal file
109
python/fastdeploy/vision/faceid/contrib/adaface/__init__.py
Normal file
@@ -0,0 +1,109 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from ..... import FastDeployModel, ModelFormat
|
||||
from ..... import c_lib_wrap as C
|
||||
|
||||
|
||||
class AdaFacePreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for AdaFace Model
|
||||
"""
|
||||
self._preprocessor = C.vision.faceid.AdaFacePreprocessor()
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for AdaFace Model
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor, include image, scale_factor, im_shape
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
|
||||
class AdaFacePostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for AdaFace Model
|
||||
|
||||
"""
|
||||
self._postprocessor = C.vision.faceid.AdaFacePostprocessor()
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for PaddleClas Model
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.5
|
||||
"""
|
||||
return self._postprocessor.l2_normalize
|
||||
|
||||
|
||||
class AdaFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a AdaFace model exported by PaddleClas.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g adaface/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g adaface/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
super(AdaFace, self).__init__(runtime_option)
|
||||
self._model = C.vision.faceid.AdaFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "AdaFace model initialize failed."
|
||||
|
||||
def predict(self, im):
|
||||
"""Detect an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: DetectionResult
|
||||
"""
|
||||
|
||||
assert im is not None, "The input image data is None."
|
||||
return self._model.predict(im)
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Detect a batch of input image list
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get AdaFacePreprocessor object of the loaded model
|
||||
|
||||
:return AdaFacePreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get AdaFacePostprocessor object of the loaded model
|
||||
|
||||
:return AdaFacePostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
@@ -1,127 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
from ..contrib.insightface_rec import InsightFaceRecognitionModel
|
||||
|
||||
|
||||
class ArcFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a ArcFace model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./arcface.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(ArcFace, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.ArcFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "ArcFace initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class CosFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a CosFace model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./cosface.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(CosFace, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.CosFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "CosFace initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
222
python/fastdeploy/vision/faceid/contrib/insightface/__init__.py
Normal file
222
python/fastdeploy/vision/faceid/contrib/insightface/__init__.py
Normal file
@@ -0,0 +1,222 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from ..... import FastDeployModel, ModelFormat
|
||||
from ..... import c_lib_wrap as C
|
||||
|
||||
|
||||
class InsightFaceRecognitionPreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for InsightFaceRecognition Model
|
||||
"""
|
||||
self._preprocessor = C.vision.faceid.InsightFaceRecognitionPreprocessor(
|
||||
)
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for InsightFaceRecognition Model
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor, include image, scale_factor, im_shape
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, tuple of (width, height),
|
||||
decide the target size after resize, default (112, 112)
|
||||
"""
|
||||
return self._preprocessor.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha values for normalization,
|
||||
default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
||||
"""
|
||||
return self._preprocessor.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization,
|
||||
default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._preprocessor.beta
|
||||
|
||||
@property
|
||||
def permute(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel,
|
||||
such as BGR->RGB, default true.
|
||||
"""
|
||||
return self._preprocessor.permute
|
||||
|
||||
|
||||
class InsightFaceRecognitionPostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for InsightFaceRecognition Model
|
||||
"""
|
||||
self._postprocessor = C.vision.faceid.InsightFaceRecognitionPostprocessor(
|
||||
)
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for PaddleClas Model
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.5
|
||||
"""
|
||||
return self._postprocessor.l2_normalize
|
||||
|
||||
|
||||
class InsightFaceRecognitionBase(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a InsightFaceRecognitionBase model exported by PaddleClas.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g InsightFaceRecognitionBase/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g InsightFaceRecognitionBase/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
self._model = C.vision.faceid.InsightFaceRecognitionBase(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "InsightFaceRecognitionBase model initialize failed."
|
||||
|
||||
def predict(self, im):
|
||||
"""Detect an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: DetectionResult
|
||||
"""
|
||||
|
||||
assert im is not None, "The input image data is None."
|
||||
return self._model.predict(im)
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Detect a batch of input image list
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get InsightFaceRecognitionPreprocessor object of the loaded model
|
||||
|
||||
:return InsightFaceRecognitionPreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get InsightFaceRecognitionPostprocessor object of the loaded model
|
||||
|
||||
:return InsightFaceRecognitionPostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
||||
|
||||
|
||||
class ArcFace(InsightFaceRecognitionBase):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a ArcFace model exported by PaddleClas.
|
||||
:param model_file: (str)Path of model file, e.g ArcFace/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g ArcFace/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.ArcFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "ArcFace model initialize failed."
|
||||
|
||||
|
||||
class CosFace(InsightFaceRecognitionBase):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a CosFace model exported by PaddleClas.
|
||||
:param model_file: (str)Path of model file, e.g CosFace/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g CosFace/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.CosFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "CosFace model initialize failed."
|
||||
|
||||
|
||||
class PartialFC(InsightFaceRecognitionBase):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a PartialFC model exported by PaddleClas.
|
||||
:param model_file: (str)Path of model file, e.g PartialFC/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g PartialFC/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.PartialFC(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "PartialFC model initialize failed."
|
||||
|
||||
|
||||
class VPL(InsightFaceRecognitionBase):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a VPL model exported by PaddleClas.
|
||||
:param model_file: (str)Path of model file, e.g VPL/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g VPL/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.VPL(model_file, params_file,
|
||||
self._runtime_option, model_format)
|
||||
assert self.initialized, "VPL model initialize failed."
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class InsightFaceRecognitionModel(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a InsightFace model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./arcface.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(InsightFaceRecognitionModel, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.InsightFaceRecognitionModel(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "InsightFaceRecognitionModel initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟InsightFaceRecognitionModel模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class PartialFC(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a PartialFC model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./partial_fc.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(PartialFC, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.PartialFC(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "PartialFC initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class VPL(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a VPL model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./vpl.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(VPL, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.VPL(model_file, params_file,
|
||||
self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "VPL initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
@@ -46,6 +46,81 @@ def classify_to_json(result):
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def keypoint_to_json(result):
|
||||
r_json = {
|
||||
"keypoints": result.keypoints,
|
||||
"scores": result.scores,
|
||||
"num_joints": result.num_joints,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def ocr_to_json(result):
|
||||
r_json = {
|
||||
"boxes": result.boxes,
|
||||
"text": result.text,
|
||||
"rec_scores": result.rec_scores,
|
||||
"cls_scores": result.cls_scores,
|
||||
"cls_labels": result.cls_labels,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def mot_to_json(result):
|
||||
r_json = {
|
||||
"boxes": result.boxes,
|
||||
"ids": result.ids,
|
||||
"scores": result.scores,
|
||||
"class_ids": result.class_ids,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def face_detection_to_json(result):
|
||||
r_json = {
|
||||
"boxes": result.boxes,
|
||||
"landmarks": result.landmarks,
|
||||
"scores": result.scores,
|
||||
"landmarks_per_face": result.landmarks_per_face,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def face_alignment_to_json(result):
|
||||
r_json = {"landmarks": result.landmarks, }
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def face_recognition_to_json(result):
|
||||
r_json = {"embedding": result.embedding, }
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def segmentation_to_json(result):
|
||||
r_json = {
|
||||
"label_map": result.label_map,
|
||||
"score_map": result.score_map,
|
||||
"shape": result.shape,
|
||||
"contain_score_map": result.contain_score_map,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def matting_to_json(result):
|
||||
r_json = {
|
||||
"alpha": result.alpha,
|
||||
"foreground": result.foreground,
|
||||
"shape": result.shape,
|
||||
"contain_foreground": result.contain_foreground,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def head_pose_to_json(result):
|
||||
r_json = {"euler_angles": result.euler_angles, }
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def fd_result_to_json(result):
|
||||
if isinstance(result, list):
|
||||
r_list = []
|
||||
@@ -58,7 +133,124 @@ def fd_result_to_json(result):
|
||||
return mask_to_json(result)
|
||||
elif isinstance(result, C.vision.ClassifyResult):
|
||||
return classify_to_json(result)
|
||||
elif isinstance(result, C.vision.KeyPointDetectionResult):
|
||||
return keypoint_to_json(result)
|
||||
elif isinstance(result, C.vision.OCRResult):
|
||||
return ocr_to_json(result)
|
||||
elif isinstance(result, C.vision.MOTResult):
|
||||
return mot_to_json(result)
|
||||
elif isinstance(result, C.vision.FaceDetectionResult):
|
||||
return face_detection_to_json(result)
|
||||
elif isinstance(result, C.vision.FaceAlignmentResult):
|
||||
return face_alignment_to_json(result)
|
||||
elif isinstance(result, C.vision.FaceRecognitionResult):
|
||||
return face_recognition_to_json(result)
|
||||
elif isinstance(result, C.vision.SegmentationResult):
|
||||
return segmentation_to_json(result)
|
||||
elif isinstance(result, C.vision.MattingResult):
|
||||
return matting_to_json(result)
|
||||
elif isinstance(result, C.vision.HeadPoseResult):
|
||||
return head_pose_to_json(result)
|
||||
else:
|
||||
assert False, "{} Conversion to JSON format is not supported".format(
|
||||
type(result))
|
||||
return {}
|
||||
|
||||
|
||||
def json_to_mask(result):
|
||||
mask = C.vision.Mask()
|
||||
mask.data = result['data']
|
||||
mask.shape = result['shape']
|
||||
return mask
|
||||
|
||||
|
||||
def json_to_detection(result):
|
||||
masks = []
|
||||
for mask in result['masks']:
|
||||
masks.append(json_to_mask(json.loads(mask)))
|
||||
det_result = C.vision.DetectionResult()
|
||||
det_result.boxes = result['boxes']
|
||||
det_result.scores = result['scores']
|
||||
det_result.label_ids = result['label_ids']
|
||||
det_result.masks = masks
|
||||
det_result.contain_masks = result['contain_masks']
|
||||
return det_result
|
||||
|
||||
|
||||
def json_to_classify(result):
|
||||
cls_result = C.vision.ClassifyResult()
|
||||
cls_result.label_ids = result['label_ids']
|
||||
cls_result.scores = result['scores']
|
||||
return cls_result
|
||||
|
||||
|
||||
def json_to_keypoint(result):
|
||||
kp_result = C.vision.KeyPointDetectionResult()
|
||||
kp_result.keypoints = result['keypoints']
|
||||
kp_result.scores = result['scores']
|
||||
kp_result.num_joints = result['num_joints']
|
||||
return kp_result
|
||||
|
||||
|
||||
def json_to_ocr(result):
|
||||
ocr_result = C.vision.OCRResult()
|
||||
ocr_result.boxes = result['boxes']
|
||||
ocr_result.text = result['text']
|
||||
ocr_result.rec_scores = result['rec_scores']
|
||||
ocr_result.cls_scores = result['cls_scores']
|
||||
ocr_result.cls_labels = result['cls_labels']
|
||||
return ocr_result
|
||||
|
||||
|
||||
def json_to_mot(result):
|
||||
mot_result = C.vision.MOTResult()
|
||||
mot_result.boxes = result['boxes']
|
||||
mot_result.ids = result['ids']
|
||||
mot_result.scores = result['scores']
|
||||
mot_result.class_ids = result['class_ids']
|
||||
return mot_result
|
||||
|
||||
|
||||
def json_to_face_detection(result):
|
||||
face_result = C.vision.FaceDetectionResult()
|
||||
face_result.boxes = result['boxes']
|
||||
face_result.landmarks = result['landmarks']
|
||||
face_result.scores = result['scores']
|
||||
face_result.landmarks_per_face = result['landmarks_per_face']
|
||||
return face_result
|
||||
|
||||
|
||||
def json_to_face_alignment(result):
|
||||
face_result = C.vision.FaceAlignmentResult()
|
||||
face_result.landmarks = result['landmarks']
|
||||
return face_result
|
||||
|
||||
|
||||
def json_to_face_recognition(result):
|
||||
face_result = C.vision.FaceRecognitionResult()
|
||||
face_result.embedding = result['embedding']
|
||||
return face_result
|
||||
|
||||
|
||||
def json_to_segmentation(result):
|
||||
seg_result = C.vision.SegmentationResult()
|
||||
seg_result.label_map = result['label_map']
|
||||
seg_result.score_map = result['score_map']
|
||||
seg_result.shape = result['shape']
|
||||
seg_result.contain_score_map = result['contain_score_map']
|
||||
return seg_result
|
||||
|
||||
|
||||
def json_to_matting(result):
|
||||
matting_result = C.vision.MattingResult()
|
||||
matting_result.alpha = result['alpha']
|
||||
matting_result.foreground = result['foreground']
|
||||
matting_result.shape = result['shape']
|
||||
matting_result.contain_foreground = result['contain_foreground']
|
||||
return matting_result
|
||||
|
||||
|
||||
def json_to_head_pose(result):
|
||||
hp_result = C.vision.HeadPoseResult()
|
||||
hp_result.euler_angles = result['euler_angles']
|
||||
return hp_result
|
||||
|
@@ -3,5 +3,6 @@ requests
|
||||
tqdm
|
||||
numpy
|
||||
opencv-python
|
||||
fastdeploy-tools==0.0.1
|
||||
fastdeploy-tools>=0.0.1
|
||||
pyyaml
|
||||
fastapi
|
||||
|
@@ -72,7 +72,7 @@ setup_configs["ENABLE_FLYCV"] = os.getenv("ENABLE_FLYCV", "OFF")
|
||||
setup_configs["ENABLE_TEXT"] = os.getenv("ENABLE_TEXT", "OFF")
|
||||
setup_configs["WITH_GPU"] = os.getenv("WITH_GPU", "OFF")
|
||||
setup_configs["WITH_IPU"] = os.getenv("WITH_IPU", "OFF")
|
||||
setup_configs["WITH_XPU"] = os.getenv("WITH_XPU", "OFF")
|
||||
setup_configs["WITH_KUNLUNXIN"] = os.getenv("WITH_KUNLUNXIN", "OFF")
|
||||
setup_configs["BUILD_ON_JETSON"] = os.getenv("BUILD_ON_JETSON", "OFF")
|
||||
setup_configs["TRT_DIRECTORY"] = os.getenv("TRT_DIRECTORY", "UNDEFINED")
|
||||
setup_configs["CUDA_DIRECTORY"] = os.getenv("CUDA_DIRECTORY",
|
||||
|
Reference in New Issue
Block a user