【Inference Optimize】DeepSeek-V3-model MLA Optimize (#3886)

* support MLA chunk_size auto search & cuda_graph
This commit is contained in:
AIbin
2025-09-11 10:46:09 +08:00
committed by GitHub
parent 637d96c6ae
commit a7392a0ff9
23 changed files with 375 additions and 310 deletions

View File

@@ -11,10 +11,11 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "cute/tensor.hpp"
#include "helper.h"
#include "paddle/extension.h"
#include "paddle/phi/core/memory/memcpy.h"
#include "utils.cuh"
template <int THREADBLOCK_SIZE>
__global__ void
@@ -116,6 +117,93 @@ void GetMaxLen(const paddle::Tensor &seq_lens_tensor,
max_len_tensor.data<int>(), batch_size);
}
template <uint32_t config_size>
__global__ void search_chunk_size_for_mla(
const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
const int *__restrict__ seq_lens_decoder,
int *__restrict__ num_blocks_x,
int *__restrict__ res_chunk_size,
const int bsz,
const int set_chunk_size,
const int block_size,
const int sm_cout) {
const uint32_t conf_id = threadIdx.x;
int gridx = 0;
if (set_chunk_size > 0 && conf_id == 0) {
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0 || seq_len_encoder > 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, set_chunk_size);
gridx += loop_times;
}
*num_blocks_x = gridx;
*res_chunk_size = set_chunk_size;
} else if (conf_id < config_size) {
__shared__ int gridx_shared[config_size];
// chunk_size is a multiple of 64
const int chunk_size = block_size << conf_id;
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0 || seq_len_encoder > 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, chunk_size);
gridx += loop_times;
}
gridx_shared[conf_id] = gridx;
__syncthreads();
if (threadIdx.x == 0) {
uint32_t res_id = 0;
uint32_t max_last_wave_block = 0;
for (uint32_t i = 1; i < config_size; i++) {
uint32_t last_wave_block = gridx_shared[i] % sm_cout;
if (last_wave_block >= max_last_wave_block) {
res_id = i;
max_last_wave_block = last_wave_block;
}
}
*num_blocks_x = gridx_shared[res_id];
*res_chunk_size = block_size << res_id;
}
}
}
__global__ void split_block_for_mla(const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
const int *__restrict__ seq_lens_decoder,
int *__restrict__ batch_ids,
int *__restrict__ tile_ids_per_batch,
const int bsz,
const int chunk_size) {
if (threadIdx.x == 0) {
int index = 0;
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, chunk_size);
if (seq_len_encoder > 0) {
loop_times = 0;
}
for (uint32_t tile_id = 0; tile_id < loop_times; tile_id++) {
batch_ids[index] = bid;
tile_ids_per_batch[index++] = tile_id;
}
}
}
}
__global__ void split_q_block(const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
int *__restrict__ batch_ids,
@@ -197,7 +285,9 @@ void GetBlockShapeAndSplitKVBlock(
const paddle::Tensor &seq_lens_this_time,
paddle::Tensor &decoder_batch_ids, // Inplace
paddle::Tensor &decoder_tile_ids_per_batch, // Inplace
paddle::Tensor &decoder_num_blocks_x_cpu, // Inplace, Pinned Memory
paddle::Tensor &decoder_num_blocks_cpu, // Inplace, Pinned Memory
paddle::Tensor &decoder_num_blocks_device, // Inplace
paddle::Tensor &decoder_chunk_size_device, // Inplace
paddle::Tensor &max_len_tensor_cpu, // Inplace, CPU
paddle::Tensor &encoder_batch_ids, // Inplace
paddle::Tensor &encoder_tile_ids_per_batch, // Inplace
@@ -230,8 +320,6 @@ void GetBlockShapeAndSplitKVBlock(
int max_system_len = max_len_cpu_ptr[6];
int max_just_dec_len_without_system = max_len_cpu_ptr[7];
auto max_len_kv =
GetEmptyTensor({1}, paddle::DataType::INT32, seq_lens_decoder.place());
get_max_len_kv_ernel<128><<<1, 128, 0, stream>>>(
@@ -241,6 +329,106 @@ void GetBlockShapeAndSplitKVBlock(
max_len_kv_cpu.copy_(max_len_kv, max_len_kv_cpu.place(), false);
// decoder
if (max_dec_len_this_time > 0) {
const bool mla_use_tensorcore = GetMlaUseTensorcore();
if (mla_use_tensorcore && group_size <= 64) {
const int set_chunk_size = get_mla_dec_chunk_size(bsz);
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
int device;
cudaGetDevice(&device);
int sm_cout;
cudaDeviceGetAttribute(&sm_cout, cudaDevAttrMultiProcessorCount, device);
constexpr int config_size =
12; // search space for chunk size:[64, 128, 256, ... 131072]
search_chunk_size_for_mla<config_size>
<<<1, 32, 0, stream>>>(seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
decoder_num_blocks_device.data<int>(),
decoder_chunk_size_device.data<int>(),
bsz,
set_chunk_size,
block_size,
sm_cout);
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
auto decoder_chunk_size_cpu =
decoder_chunk_size_device.copy_to(paddle::CPUPlace(), false);
const int chunk_size = decoder_chunk_size_cpu.data<int>()[0];
// NOTE: (changwenbin) When using auto_chunk,
// decode_max_tile_size must take into account the maximum case, where * 1024 can cover 128K.
// const uint32_t decoder_batch_shape = seq_lens_decoder.dims()[0] * 1024;
const uint32_t decoder_max_tile_size_per_bs_q =
div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape =
bsz * 1024 * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(
cudaMemsetAsync(decoder_batch_ids.data<int>(),
0,
decoder_batch_shape * sizeof(int32_t),
stream));
PADDLE_ENFORCE_GPU_SUCCESS(
cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(),
0,
decoder_batch_shape * sizeof(int32_t),
stream));
split_block_for_mla<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
bsz,
chunk_size);
} else {
// Note:(changwenbin)In order to adapt to cudagraph, the maximum value should be taken here
const uint32_t decoder_max_tile_size_per_bs_q = div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape = bsz * 1024 * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_batch_ids.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
split_q_block<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
decoder_num_blocks_device.data<int>(),
bsz,
decoder_block_shape_q,
group_size);
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
}
} else {
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
}
// encoder
if (max_enc_len_this_time > 0) {
const uint32_t max_tile_size_per_bs_kv = div_up(max_enc_dec_len_this_time, block_size);
const uint32_t kv_batch_shape = bsz * max_tile_size_per_bs_kv;
@@ -272,28 +460,6 @@ void GetBlockShapeAndSplitKVBlock(
encoder_num_blocks_x_cpu.copy_(encoder_num_blocks_x, encoder_num_blocks_x_cpu.place(), false);
}
if (max_just_dec_len_this_time > 0) {
// Clear buffer
const uint32_t decoder_max_tile_size_per_bs_q = div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape = bsz * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_batch_ids.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_num_blocks_x_cpu.data<int>(), 0, sizeof(int32_t), stream));
auto decoder_num_blocks_x =
GetEmptyTensor({1}, paddle::DataType::INT32, seq_lens_encoder.place());
split_q_block<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
decoder_num_blocks_x.data<int>(),
bsz,
decoder_block_shape_q,
group_size);
decoder_num_blocks_x_cpu.copy_(decoder_num_blocks_x, decoder_num_blocks_x_cpu.place(), false);
}
}
PD_BUILD_STATIC_OP(get_block_shape_and_split_kv_block)
@@ -303,7 +469,9 @@ PD_BUILD_STATIC_OP(get_block_shape_and_split_kv_block)
"seq_lens_this_time",
"decoder_batch_ids",
"decoder_tile_ids_per_batch",
"decoder_num_blocks_x_cpu",
"decoder_num_blocks_cpu",
"decoder_num_blocks_device",
"decoder_chunk_size_device",
"max_len_tensor_cpu",
"encoder_batch_ids",
"encoder_tile_ids_per_batch",