[SOPHGO] Add PaddleDetection YOLOv8 example (#1165)

sophon yolov8s example

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
Zilong Xing
2023-01-30 11:47:07 +08:00
committed by GitHub
parent 294607fc4a
commit a709fe4813
8 changed files with 131 additions and 5 deletions

View File

@@ -5,8 +5,9 @@
目前SOPHGO支持如下模型的部署
- [PP-YOLOE系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyoloe)
- [PicoDet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)
- [YOLOV8系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/)
## 准备PP-YOLOE或者PicoDet部署模型以及转换模型
## 准备PP-YOLOE YOLOV8或者PicoDet部署模型以及转换模型
SOPHGO-TPU部署模型前需要将Paddle模型转换成bmodel模型具体步骤如下:
- Paddle动态图模型转换为ONNX模型请参考[PaddleDetection导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/EXPORT_MODEL.md).
@@ -14,7 +15,7 @@ SOPHGO-TPU部署模型前需要将Paddle模型转换成bmodel模型具体步
## 模型转换example
PP-YOLOE和PicoDet模型转换过程类似下面以ppyoloe_crn_s_300e_coco为例子,教大家如何转换Paddle模型到SOPHGO-TPU模型
PP-YOLOE YOLOV8和PicoDet模型转换过程类似下面以ppyoloe_crn_s_300e_coco为例子,教大家如何转换Paddle模型到SOPHGO-TPU模型
### 导出ONNX模型
```shell

View File

@@ -14,6 +14,8 @@ include_directories(${FastDeploy_INCLUDE_DIRS})
add_executable(infer_ppyoloe ${PROJECT_SOURCE_DIR}/infer_ppyoloe.cc)
add_executable(infer_picodet ${PROJECT_SOURCE_DIR}/infer_picodet.cc)
add_executable(infer_yolov8 ${PROJECT_SOURCE_DIR}/infer_yolov8.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_ppyoloe ${FASTDEPLOY_LIBS})
target_link_libraries(infer_picodet ${FASTDEPLOY_LIBS})
target_link_libraries(infer_yolov8 ${FASTDEPLOY_LIBS})

View File

@@ -1,6 +1,6 @@
# PaddleDetection C++部署示例
本目录下提供`infer_ppyoloe.cc``infer_picodet.cc`快速完成PP-YOLOE模型和PicoDet模型在SOPHGO BM1684x板子上加速部署的示例。
本目录下提供`infer_ppyoloe.cc`,`infer_yolov8.cc``infer_picodet.cc`快速完成PP-YOLOE模型,YOLOV8模型和PicoDet模型在SOPHGO BM1684x板子上加速部署的示例。
在部署前,需确认以下两个步骤:
@@ -19,6 +19,7 @@
├── image # 存放图片的文件夹
├── infer_ppyoloe.cc
├── infer_picodet.cc
├── infer_yolov8.cc
└── model # 存放模型文件的文件夹
```

View File

@@ -0,0 +1,59 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/time.h>
#include <iostream>
#include <string>
#include "fastdeploy/vision.h"
void SophgoInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + "/compilation.bmodel";
auto params_file = "";
auto config_file = model_dir + "/infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseSophgo();
auto format = fastdeploy::ModelFormat::SOPHGO;
auto model = fastdeploy::vision::detection::PaddleYOLOv8(model_file, params_file, config_file, option, format);
model.GetPostprocessor().ApplyDecodeAndNMS();
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("infer_sophgo.jpg", vis_im);
std::cout << "Visualized result saved in ./infer_sophgo.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./yolov8_model_dir ./test.jpeg"
<< std::endl;
return -1;
}
SophgoInfer(argv[1], argv[2]);
return 0;
}

View File

@@ -4,7 +4,7 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/sophgo.md)
本目录下提供`infer_ppyoloe.py``infer_picodet.py`快速完成 PP-YOLOE 和 PicoDet 在SOPHGO TPU上部署的示例。执行如下脚本即可完成
本目录下提供`infer_ppyoloe.py`,`infer_yolov8.py``infer_picodet.py`快速完成 PP-YOLOE ,PP-YOLOV8和 PicoDet 在SOPHGO TPU上部署的示例。执行如下脚本即可完成
```bash
# 下载部署示例代码
@@ -21,6 +21,8 @@ python3 infer_ppyoloe.py --model_file model/ppyoloe_crn_s_300e_coco_1684x_f32.bm
#picodet推理示例
python3 infer_picodet.py --model_file model/picodet_s_416_coco_lcnet_1684x_f32.bmodel --config_file model/infer_cfg.yml --image ./000000014439.jpg
#yolov8推理示例
python3 infer_yolov8.py --model_file model/yolov8s_s_300e_coco_1684x_f32.bmodel --config_file model/infer_cfg.yml --image ./000000014439.jpg
# 运行完成后返回结果如下所示
可视化结果存储在sophgo_result.jpg中
```
@@ -28,5 +30,7 @@ python3 infer_picodet.py --model_file model/picodet_s_416_coco_lcnet_1684x_f32.b
## 其它文档
- [PP-YOLOE C++部署](../cpp)
- [PicoDet C++部署](../cpp)
- [YOLOV8 C++部署](../cpp)
- [转换PicoDet SOPHGO模型文档](../README.md)
- [转换PP-YOLOE SOPHGO模型文档](../README.md)
- [转换YOLOV8 SOPHGO模型文档](../README.md)

View File

@@ -0,0 +1,59 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_file", required=True, help="Path of sophgo model.")
parser.add_argument("--config_file", required=True, help="Path of config.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
model_file = args.model_file
params_file = ""
config_file = args.config_file
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
runtime_option.use_sophgo()
model = fd.vision.detection.PaddleYOLOv8(
model_file,
params_file,
config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.SOPHGO)
model.postprocessor.apply_decode_and_nms()
# 预测图片分割结果
im = cv2.imread(args.image)
result = model.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("sophgo_result.jpg", vis_im)
print("Visualized result save in ./sophgo_result.jpg")

View File

@@ -260,6 +260,7 @@ class FASTDEPLOY_DECL PaddleYOLOv8 : public PPDetBase {
valid_kunlunxin_backends = {Backend::LITE};
valid_rknpu_backends = {Backend::RKNPU2};
valid_ascend_backends = {Backend::LITE};
valid_sophgonpu_backends = {Backend::SOPHGOTPU};
initialized = Initialize();
}

View File

@@ -519,7 +519,6 @@ class PaddleYOLOv8(PPYOLOE):
super(PPYOLOE, self).__init__(runtime_option)
assert model_format == ModelFormat.PADDLE, "PaddleYOLOv8 model only support model format of ModelFormat.Paddle now."
self._model = C.vision.detection.PaddleYOLOv8(
model_file, params_file, config_file, self._runtime_option,
model_format)