mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
Add PD CI case (#3490)
* Create test_ernie_03b_pd.py * Update test_ernie_03b_pd.py
This commit is contained in:
434
tests/ci_use/ERNIE_0dot3B/test_ernie_03b_pd.py
Normal file
434
tests/ci_use/ERNIE_0dot3B/test_ernie_03b_pd.py
Normal file
@@ -0,0 +1,434 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
import signal
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
|
||||
import pytest
|
||||
import requests
|
||||
|
||||
# Read ports from environment variables; use default values if not set
|
||||
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
|
||||
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
|
||||
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
|
||||
|
||||
# List of ports to clean before and after tests
|
||||
PORTS_TO_CLEAN = [
|
||||
FD_API_PORT,
|
||||
FD_ENGINE_QUEUE_PORT,
|
||||
FD_METRICS_PORT,
|
||||
FD_API_PORT + 1,
|
||||
FD_ENGINE_QUEUE_PORT + 1,
|
||||
FD_METRICS_PORT + 1,
|
||||
]
|
||||
|
||||
|
||||
def is_port_open(host: str, port: int, timeout=1.0):
|
||||
"""
|
||||
Check if a TCP port is open on the given host.
|
||||
Returns True if connection succeeds, False otherwise.
|
||||
"""
|
||||
try:
|
||||
with socket.create_connection((host, port), timeout):
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def kill_process_on_port(port: int):
|
||||
"""
|
||||
Kill processes that are listening on the given port.
|
||||
Uses `lsof` to find process ids and sends SIGKILL.
|
||||
"""
|
||||
try:
|
||||
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
|
||||
current_pid = os.getpid()
|
||||
parent_pid = os.getppid()
|
||||
for pid in output.splitlines():
|
||||
pid = int(pid)
|
||||
if pid in (current_pid, parent_pid):
|
||||
print(f"Skip killing current process (pid={pid}) on port {port}")
|
||||
continue
|
||||
os.kill(pid, signal.SIGKILL)
|
||||
print(f"Killed process on port {port}, pid={pid}")
|
||||
except subprocess.CalledProcessError:
|
||||
pass
|
||||
|
||||
|
||||
def clean_ports():
|
||||
"""
|
||||
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
|
||||
"""
|
||||
for port in PORTS_TO_CLEAN:
|
||||
kill_process_on_port(port)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def setup_and_run_server():
|
||||
"""
|
||||
Pytest fixture that runs once per test session:
|
||||
- Cleans ports before tests
|
||||
- Starts the API server as a subprocess
|
||||
- Waits for server port to open (up to 30 seconds)
|
||||
- Tears down server after all tests finish
|
||||
"""
|
||||
print("Pre-test port cleanup...")
|
||||
clean_ports()
|
||||
|
||||
base_path = os.getenv("MODEL_PATH")
|
||||
if base_path:
|
||||
model_path = os.path.join(base_path, "ERNIE-4.5-0.3B-Paddle")
|
||||
else:
|
||||
model_path = "./ERNIE-4.5-0.3B-Paddle"
|
||||
|
||||
# prefill实例
|
||||
env_prefill = os.environ.copy()
|
||||
env_prefill["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
env_prefill["INFERENCE_MSG_QUEUE_ID"] = str(FD_API_PORT)
|
||||
prefill_log_path = "server.log"
|
||||
prefill_cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"fastdeploy.entrypoints.openai.api_server",
|
||||
"--model",
|
||||
model_path,
|
||||
"--port",
|
||||
str(FD_API_PORT),
|
||||
"--tensor-parallel-size",
|
||||
"1",
|
||||
"--engine-worker-queue-port",
|
||||
str(FD_ENGINE_QUEUE_PORT),
|
||||
"--metrics-port",
|
||||
str(FD_METRICS_PORT),
|
||||
"--max-model-len",
|
||||
"8192",
|
||||
"--max-num-seqs",
|
||||
"20",
|
||||
"--quantization",
|
||||
"wint8",
|
||||
"--splitwise-role",
|
||||
"prefill",
|
||||
]
|
||||
|
||||
# Start subprocess in new process group
|
||||
with open(prefill_log_path, "w") as logfile:
|
||||
process_prefill = subprocess.Popen(
|
||||
prefill_cmd,
|
||||
stdout=logfile,
|
||||
stderr=subprocess.STDOUT,
|
||||
start_new_session=True, # Enables killing full group via os.killpg
|
||||
env=env_prefill,
|
||||
)
|
||||
|
||||
# decode实例
|
||||
env_decode = os.environ.copy()
|
||||
env_decode["CUDA_VISIBLE_DEVICES"] = "1"
|
||||
env_decode["INFERENCE_MSG_QUEUE_ID"] = str(FD_API_PORT + 1)
|
||||
env_decode["FD_LOG_DIR"] = "decode_log"
|
||||
decode_log_path = "decode_server.log"
|
||||
decode_cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"fastdeploy.entrypoints.openai.api_server",
|
||||
"--model",
|
||||
model_path,
|
||||
"--port",
|
||||
str(FD_API_PORT + 1),
|
||||
"--tensor-parallel-size",
|
||||
"1",
|
||||
"--engine-worker-queue-port",
|
||||
str(FD_ENGINE_QUEUE_PORT + 1),
|
||||
"--metrics-port",
|
||||
str(FD_METRICS_PORT + 1),
|
||||
"--cache-queue-port",
|
||||
str(FD_API_PORT + 2),
|
||||
"--max-model-len",
|
||||
"8192",
|
||||
"--max-num-seqs",
|
||||
"20",
|
||||
"--quantization",
|
||||
"wint8",
|
||||
"--splitwise-role",
|
||||
"decode",
|
||||
]
|
||||
|
||||
# Start subprocess in new process group
|
||||
with open(decode_log_path, "w") as logfile:
|
||||
process_decode = subprocess.Popen(
|
||||
decode_cmd,
|
||||
stdout=logfile,
|
||||
stderr=subprocess.STDOUT,
|
||||
start_new_session=True, # Enables killing full group via os.killpg
|
||||
env=env_decode,
|
||||
)
|
||||
|
||||
# Wait up to 300 seconds for API server to be ready
|
||||
for _ in range(300):
|
||||
if is_port_open("127.0.0.1", FD_API_PORT):
|
||||
if is_port_open("127.0.0.1", FD_API_PORT + 1):
|
||||
print(f"Prefill server is up on port {FD_API_PORT}")
|
||||
print(f"Decode server is up on port {FD_API_PORT + 1}")
|
||||
break
|
||||
time.sleep(1)
|
||||
else:
|
||||
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
|
||||
try:
|
||||
os.killpg(process_prefill.pid, signal.SIGTERM)
|
||||
os.killpg(process_decode.pid, signal.SIGTERM)
|
||||
clean_ports()
|
||||
except Exception as e:
|
||||
print(f"Failed to kill process group: {e}")
|
||||
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
|
||||
|
||||
yield # Run tests
|
||||
|
||||
print("\n===== Post-test server cleanup... =====")
|
||||
try:
|
||||
os.killpg(process_prefill.pid, signal.SIGTERM)
|
||||
os.killpg(process_decode.pid, signal.SIGTERM)
|
||||
clean_ports()
|
||||
print(f"Prefill server (pid={process_prefill.pid}) terminated")
|
||||
print(f"Decode server (pid={process_decode.pid}) terminated")
|
||||
except Exception as e:
|
||||
print(f"Failed to terminate API server: {e}")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def api_url(request):
|
||||
"""
|
||||
Returns the API endpoint URL for chat completions.
|
||||
"""
|
||||
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions", f"http://0.0.0.0:{FD_API_PORT + 1}/v1/chat/completions"
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def metrics_url(request):
|
||||
"""
|
||||
Returns the metrics endpoint URL.
|
||||
"""
|
||||
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def headers():
|
||||
"""
|
||||
Returns common HTTP request headers.
|
||||
"""
|
||||
return {"Content-Type": "application/json"}
|
||||
|
||||
|
||||
def send_request(url, payload, timeout=600):
|
||||
"""
|
||||
发送请求到指定的URL,并返回响应结果。
|
||||
"""
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
try:
|
||||
res = requests.post(url, headers=headers, json=payload, timeout=timeout)
|
||||
print("🟢 接收响应中...\n")
|
||||
return res
|
||||
except requests.exceptions.Timeout:
|
||||
print(f"❌ 请求超时(超过 {timeout} 秒)")
|
||||
return None
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"❌ 请求失败:{e}")
|
||||
return None
|
||||
|
||||
|
||||
def get_stream_chunks(response):
|
||||
"""解析流式返回,生成chunk List[dict]"""
|
||||
chunks = []
|
||||
|
||||
if response.status_code == 200:
|
||||
for line in response.iter_lines(decode_unicode=True):
|
||||
if line:
|
||||
if line.startswith("data: "):
|
||||
line = line[len("data: ") :]
|
||||
|
||||
if line.strip() == "[DONE]":
|
||||
break
|
||||
|
||||
try:
|
||||
chunk = json.loads(line)
|
||||
chunks.append(chunk)
|
||||
except Exception as e:
|
||||
print(f"解析失败: {e}, 行内容: {line}")
|
||||
else:
|
||||
print(f"请求失败,状态码: {response.status_code}")
|
||||
print("返回内容:", response.text)
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def test_chat_usage_stream(api_url):
|
||||
"""测试流式chat usage"""
|
||||
payload = {
|
||||
"model": "default",
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"seed": 33,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "牛顿的三大运动定律是什么?"},
|
||||
],
|
||||
"max_tokens": 50,
|
||||
"stream": True,
|
||||
"stream_options": {"include_usage": True, "continuous_usage_stats": True},
|
||||
"metadata": {"min_tokens": 10},
|
||||
}
|
||||
p_url, d_url = api_url
|
||||
|
||||
response = send_request(url=p_url, payload=payload)
|
||||
chunks = get_stream_chunks(response)
|
||||
result = "".join([x["choices"][0]["delta"]["content"] for x in chunks[:-1]])
|
||||
print("Prefill Response:", result)
|
||||
assert result != "", "结果为空"
|
||||
usage = chunks[-1]["usage"]
|
||||
total_tokens = usage["completion_tokens"] + usage["prompt_tokens"]
|
||||
assert payload["max_tokens"] >= usage["completion_tokens"], "completion_tokens大于max_tokens"
|
||||
assert payload["metadata"]["min_tokens"] <= usage["completion_tokens"], "completion_tokens小于min_tokens"
|
||||
assert usage["total_tokens"] == total_tokens, "total_tokens不等于prompt_tokens + completion_tokens"
|
||||
|
||||
response = send_request(url=d_url, payload=payload)
|
||||
chunks = get_stream_chunks(response)
|
||||
result = "".join([x["choices"][0]["delta"]["content"] for x in chunks[:-1]])
|
||||
print("Decode Response:", result)
|
||||
assert result != "", "结果为空"
|
||||
# for idx, chunk in enumerate(chunks):
|
||||
# print(f"\nchunk[{idx}]:\n{json.dumps(chunk, indent=2, ensure_ascii=False)}")
|
||||
usage = chunks[-1]["usage"]
|
||||
total_tokens = usage["completion_tokens"] + usage["prompt_tokens"]
|
||||
assert payload["max_tokens"] >= usage["completion_tokens"], "completion_tokens大于max_tokens"
|
||||
assert payload["metadata"]["min_tokens"] <= usage["completion_tokens"], "completion_tokens小于min_tokens"
|
||||
assert usage["total_tokens"] == total_tokens, "total_tokens不等于prompt_tokens + completion_tokens"
|
||||
|
||||
|
||||
def test_chat_usage_non_stream(api_url):
|
||||
"""测试非流式chat usage"""
|
||||
payload = {
|
||||
"model": "default",
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"seed": 33,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "牛顿的三大运动定律是什么?"},
|
||||
],
|
||||
"max_tokens": 50,
|
||||
"stream": False,
|
||||
"metadata": {"min_tokens": 10},
|
||||
}
|
||||
p_url, d_url = api_url
|
||||
|
||||
response = send_request(url=p_url, payload=payload).json()
|
||||
usage = response["usage"]
|
||||
result = response["choices"][0]["message"]["content"]
|
||||
assert result != "", "结果为空"
|
||||
total_tokens = usage["completion_tokens"] + usage["prompt_tokens"]
|
||||
assert payload["max_tokens"] >= usage["completion_tokens"], "completion_tokens大于max_tokens"
|
||||
assert payload["metadata"]["min_tokens"] <= usage["completion_tokens"], "completion_tokens小于min_tokens"
|
||||
assert usage["total_tokens"] == total_tokens, "total_tokens不等于prompt_tokens + completion_tokens"
|
||||
|
||||
response = send_request(url=d_url, payload=payload).json()
|
||||
usage = response["usage"]
|
||||
result = response["choices"][0]["message"]["content"]
|
||||
assert result != "", "结果为空"
|
||||
total_tokens = usage["completion_tokens"] + usage["prompt_tokens"]
|
||||
assert payload["max_tokens"] >= usage["completion_tokens"], "completion_tokens大于max_tokens"
|
||||
assert payload["metadata"]["min_tokens"] <= usage["completion_tokens"], "completion_tokens小于min_tokens"
|
||||
assert usage["total_tokens"] == total_tokens, "total_tokens不等于prompt_tokens + completion_tokens"
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="修复后打开")
|
||||
def test_non_chat_usage_stream(api_url):
|
||||
"""测试流式非chat usage"""
|
||||
payload = {
|
||||
"model": "default",
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"seed": 33,
|
||||
"prompt": "牛顿的三大运动定律是什么?",
|
||||
"max_tokens": 50,
|
||||
"stream": True,
|
||||
"stream_options": {"include_usage": True, "continuous_usage_stats": True},
|
||||
"metadata": {"min_tokens": 10},
|
||||
}
|
||||
p_url, d_url = api_url
|
||||
p_url = p_url.replace("chat/completions", "completions")
|
||||
d_url = d_url.replace("chat/completions", "completions")
|
||||
|
||||
response = send_request(url=p_url, payload=payload)
|
||||
chunks = get_stream_chunks(response)
|
||||
result = "".join([x["choices"][0]["text"] for x in chunks[:-1]])
|
||||
# print("Prefill Response:", result)
|
||||
assert result != "", "结果为空"
|
||||
usage = chunks[-1]["usage"]
|
||||
total_tokens = usage["completion_tokens"] + usage["prompt_tokens"]
|
||||
assert payload["max_tokens"] >= usage["completion_tokens"], "completion_tokens大于max_tokens"
|
||||
assert payload["metadata"]["min_tokens"] <= usage["completion_tokens"], "completion_tokens小于min_tokens"
|
||||
assert usage["total_tokens"] == total_tokens, "total_tokens不等于prompt_tokens + completion_tokens"
|
||||
|
||||
response = send_request(url=d_url, payload=payload)
|
||||
chunks = get_stream_chunks(response)
|
||||
result = "".join([x["choices"][0]["text"] for x in chunks[:-1]])
|
||||
# print("Decode Response:", result)
|
||||
assert result != "", "结果为空"
|
||||
usage = chunks[-1]["usage"]
|
||||
total_tokens = usage["completion_tokens"] + usage["prompt_tokens"]
|
||||
assert payload["max_tokens"] >= usage["completion_tokens"], "completion_tokens大于max_tokens"
|
||||
assert payload["metadata"]["min_tokens"] <= usage["completion_tokens"], "completion_tokens小于min_tokens"
|
||||
assert usage["total_tokens"] == total_tokens, "total_tokens不等于prompt_tokens + completion_tokens"
|
||||
|
||||
|
||||
def test_non_chat_usage_non_stream(api_url):
|
||||
"""测试非流式非chat usage"""
|
||||
payload = {
|
||||
"model": "default",
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"seed": 33,
|
||||
"prompt": "牛顿的三大运动定律是什么?",
|
||||
"max_tokens": 50,
|
||||
"stream": False,
|
||||
"metadata": {"min_tokens": 10},
|
||||
}
|
||||
p_url, d_url = api_url
|
||||
p_url = p_url.replace("chat/completions", "completions")
|
||||
d_url = d_url.replace("chat/completions", "completions")
|
||||
|
||||
response = send_request(url=p_url, payload=payload).json()
|
||||
usage = response["usage"]
|
||||
result = response["choices"][0]["text"]
|
||||
# print("Prefill Response:", result)
|
||||
assert result != "", "结果为空"
|
||||
total_tokens = usage["completion_tokens"] + usage["prompt_tokens"]
|
||||
assert payload["max_tokens"] >= usage["completion_tokens"], "completion_tokens大于max_tokens"
|
||||
assert payload["metadata"]["min_tokens"] <= usage["completion_tokens"], "completion_tokens小于min_tokens"
|
||||
assert usage["total_tokens"] == total_tokens, "total_tokens不等于prompt_tokens + completion_tokens"
|
||||
|
||||
response = send_request(url=d_url, payload=payload).json()
|
||||
usage = response["usage"]
|
||||
result = response["choices"][0]["text"]
|
||||
assert result != "", "结果为空"
|
||||
total_tokens = usage["completion_tokens"] + usage["prompt_tokens"]
|
||||
assert payload["max_tokens"] >= usage["completion_tokens"], "completion_tokens大于max_tokens"
|
||||
assert payload["metadata"]["min_tokens"] <= usage["completion_tokens"], "completion_tokens小于min_tokens"
|
||||
assert usage["total_tokens"] == total_tokens, "total_tokens不等于prompt_tokens + completion_tokens"
|
Reference in New Issue
Block a user