[Model] Add Paddle3D smoke model (#1766)

* add smoke model

* add 3d vis

* update code

* update doc

* mv paddle3d from detection to perception

* update result for velocity

* update code for CI

* add set input data for TRT backend

* add serving support for smoke model

* update code

* update code

* update code

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
yeliang2258
2023-04-14 16:30:56 +08:00
committed by GitHub
parent 81fbd54c9d
commit a509dd8ec1
53 changed files with 2610 additions and 26 deletions

View File

@@ -0,0 +1,194 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include "fastdeploy/vision/visualize/visualize.h"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "yaml-cpp/yaml.h"
namespace fastdeploy {
namespace vision {
using matrix = std::vector<std::vector<float>>;
matrix Multiple(const matrix a, const matrix b) {
const int m = a.size(); // a rows
if (m == 0) {
matrix c;
return c;
}
if (a[0].size() != b.size()) {
FDERROR << "A[m,n] * B[p,q], n must equal to p." << std::endl;
matrix c;
return c;
}
const int n = a[0].size(); // a cols
const int p = b[0].size(); // b cols
matrix c(m, std::vector<float>(p, 0));
for (auto i = 0; i < m; i++) {
for (auto j = 0; j < p; j++) {
for (auto k = 0; k < n; k++) c[i][j] += a[i][k] * b[k][j];
}
}
return c;
}
cv::Mat VisPerception(const cv::Mat& im, const PerceptionResult& result,
const std::string& config_file, float score_threshold,
int line_size, float font_size) {
if (result.scores.empty()) {
return im;
}
YAML::Node cfg;
try {
cfg = YAML::LoadFile(config_file);
} catch (YAML::BadFile& e) {
FDERROR << "Failed to load yaml file " << config_file
<< ", maybe you should check this file." << std::endl;
return im;
}
std::vector<int> target_size;
for (const auto& op : cfg["Preprocess"]) {
std::string op_name = op["type"].as<std::string>();
if (op_name == "Resize") {
target_size = op["target_size"].as<std::vector<int>>();
}
}
std::vector<float> vec_k_data = cfg["k_data"].as<std::vector<float>>();
if (vec_k_data.size() != 9) {
FDERROR
<< "The K data load from the yaml file: " << config_file
<< " is unexpected, the expected size is 9, but the loaded size is: "
<< vec_k_data.size() << " ,maybe you should check this file."
<< std::endl;
return im;
}
matrix k_data(3, std::vector<float>());
for (auto j = 0; j < 3; j++) {
k_data[j].insert(k_data[j].begin(), vec_k_data.begin() + j * 3,
vec_k_data.begin() + j * 3 + 3);
}
std::vector<double> rvec = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
std::vector<double> tvec = {0, 0, 0};
matrix connect_line_id = {{1, 0}, {2, 7}, {3, 6}, {4, 5}, {1, 2}, {2, 3},
{3, 4}, {4, 1}, {0, 7}, {7, 6}, {6, 5}, {5, 0}};
int max_label_id =
*std::max_element(result.label_ids.begin(), result.label_ids.end());
std::vector<int> color_map = GenerateColorMap(max_label_id);
int h = im.rows;
int w = im.cols;
cv::Mat vis_im = im.clone();
cv::resize(im, vis_im, cv::Size(target_size[1], target_size[0]), 0, 0, 0);
for (size_t i = 0; i < result.scores.size(); ++i) {
if (result.scores[i] < 0.5) {
continue;
}
float h = result.boxes[i][4];
float w = result.boxes[i][5];
float l = result.boxes[i][6];
float x = result.center[i][0];
float y = result.center[i][1];
float z = result.center[i][2];
std::vector<float> x_corners = {0, l, l, l, l, 0, 0, 0};
std::vector<float> y_corners = {0, 0, h, h, 0, 0, h, h};
std::vector<float> z_corners = {0, 0, 0, w, w, w, w, 0};
for (auto j = 0; j < x_corners.size(); j++) {
x_corners[j] = x_corners[j] - l / 2;
y_corners[j] = y_corners[j] - h;
z_corners[j] = z_corners[j] - w / 2;
}
matrix corners_3d = {x_corners, y_corners, z_corners};
float ry = result.yaw_angle[i];
matrix rot_mat = {
{cosf(ry), 0, sinf(ry)}, {0, 1, 0}, {sinf(ry), 0, cosf(ry)}};
matrix rot_corners_3d = Multiple(rot_mat, corners_3d);
for (auto j = 0; j < rot_corners_3d[0].size(); j++) {
rot_corners_3d[0][j] += x;
rot_corners_3d[1][j] += y;
rot_corners_3d[2][j] += z;
}
auto corners_2d = Multiple(k_data, rot_corners_3d);
for (auto j = 0; j < corners_2d[0].size(); j++) {
corners_2d[0][j] /= corners_2d[2][j];
corners_2d[1][j] /= corners_2d[2][j];
}
std::vector<float> box2d = {
*std::min_element(corners_2d[0].begin(), corners_2d[0].end()),
*std::min_element(corners_2d[1].begin(), corners_2d[1].end()),
*std::max_element(corners_2d[0].begin(), corners_2d[0].end()),
*std::max_element(corners_2d[1].begin(), corners_2d[1].end())};
if (box2d[0] == 0 && box2d[1] == 0 && box2d[2] == 0 && box2d[3] == 0) {
continue;
}
std::vector<cv::Point3f> points3d;
for (auto j = 0; j < rot_corners_3d[0].size(); j++) {
points3d.push_back(cv::Point3f(rot_corners_3d[0][j], rot_corners_3d[1][j],
rot_corners_3d[2][j]));
}
cv::Mat rVec(3, 3, cv::DataType<double>::type, rvec.data());
cv::Mat tVec(3, 1, cv::DataType<double>::type, tvec.data());
std::vector<float> vec_k;
for (auto&& v : k_data) {
vec_k.insert(vec_k.end(), v.begin(), v.end());
}
cv::Mat intrinsicMat(3, 3, cv::DataType<float>::type, vec_k.data());
cv::Mat distCoeffs(5, 1, cv::DataType<double>::type);
std::vector<cv::Point2f> projectedPoints;
cv::projectPoints(points3d, rVec, tVec, intrinsicMat, distCoeffs,
projectedPoints);
int c0 = color_map[3 * result.label_ids[i] + 0];
int c1 = color_map[3 * result.label_ids[i] + 1];
int c2 = color_map[3 * result.label_ids[i] + 2];
cv::Scalar color = cv::Scalar(c0, c1, c2);
for (auto id = 0; id < connect_line_id.size(); id++) {
int p1 = connect_line_id[id][0];
int p2 = connect_line_id[id][1];
cv::line(vis_im, projectedPoints[p1], projectedPoints[p2], color, 1);
}
int font = cv::FONT_HERSHEY_SIMPLEX;
std::string score = std::to_string(result.scores[i]);
if (score.size() > 4) {
score = score.substr(0, 4);
}
std::string text = std::to_string(result.label_ids[i]) + ", " + score;
cv::Point2f original;
original.x = box2d[0];
original.y = box2d[1];
cv::putText(vis_im, text, original, font, font_size,
cv::Scalar(255, 255, 255), 1);
}
return vis_im;
}
} // namespace vision
} // namespace fastdeploy