[Other] Optimize paddle backend (#1265)

* Optimize paddle backend

* optimize paddle backend

* add version support
This commit is contained in:
Jason
2023-02-08 19:12:03 +08:00
committed by GitHub
parent 60ba4b06c1
commit a4b0565b9a
10 changed files with 265 additions and 174 deletions

View File

@@ -24,54 +24,71 @@
namespace fastdeploy {
/*! @brief Option object to configure GraphCore IPU
*/
struct IpuOption {
/// IPU device id
int ipu_device_num;
/// the batch size in the graph, only work when graph has no batch shape info
int ipu_micro_batch_size;
/// enable pipelining
bool ipu_enable_pipelining;
/// the number of batches per run in pipelining
int ipu_batches_per_step;
/// enable fp16
bool ipu_enable_fp16;
/// the number of graph replication
int ipu_replica_num;
/// the available memory proportion for matmul/conv
float ipu_available_memory_proportion;
/// enable fp16 partial for matmul, only work with fp16
bool ipu_enable_half_partial;
};
/*! @brief Option object to configure Paddle Inference backend
*/
struct PaddleBackendOption {
/// Print log information while initialize Paddle Inference backend
bool enable_log_info = false;
/// Enable MKLDNN while inference on CPU
bool enable_mkldnn = true;
/// Use Paddle Inference + TensorRT to inference model on GPU
bool enable_trt = false;
/*
* @brief IPU option, this will configure the IPU hardware, if inference model in IPU
*/
IpuOption ipu_option;
/// Collect shape for model while enabel_trt is true
bool collect_trt_shape = false;
/// Cache input shape for mkldnn while the input data will change dynamiclly
int mkldnn_cache_size = -1;
/// initialize memory size(MB) for GPU
int gpu_mem_init_size = 100;
void DisableTrtOps(const std::vector<std::string>& ops) {
trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}
void DeletePass(const std::string& pass_name) {
delete_pass_names.push_back(pass_name);
}
// The belowing parameters may be removed, please do not
// read or write them directly
TrtBackendOption trt_option;
bool enable_pinned_memory = false;
void* external_stream_ = nullptr;
Device device = Device::CPU;
int device_id = 0;
std::vector<std::string> trt_disabled_ops_{};
int cpu_thread_num = 8;
std::vector<std::string> delete_pass_names = {};
std::string model_file = ""; // Path of model file
std::string params_file = ""; // Path of parameters file, can be empty
// load model and paramters from memory
bool model_from_memory_ = false;
#ifdef WITH_GPU
bool use_gpu = true;
#else
bool use_gpu = false;
#endif
bool enable_mkldnn = true;
bool enable_log_info = false;
bool enable_trt = false;
TrtBackendOption trt_option;
bool collect_shape = false;
std::vector<std::string> trt_disabled_ops_{};
#ifdef WITH_IPU
bool use_ipu = true;
IpuOption ipu_option;
#else
bool use_ipu = false;
#endif
int mkldnn_cache_size = 1;
int cpu_thread_num = 8;
// initialize memory size(MB) for GPU
int gpu_mem_init_size = 100;
// gpu device id
int gpu_id = 0;
bool enable_pinned_memory = false;
void* external_stream_ = nullptr;
std::vector<std::string> delete_pass_names = {};
};
} // namespace fastdeploy

View File

@@ -0,0 +1,53 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
#include "fastdeploy/runtime/backends/paddle/option.h"
namespace fastdeploy {
void BindIpuOption(pybind11::module& m) {
pybind11::class_<IpuOption>(m, "IpuOption")
.def(pybind11::init())
.def_readwrite("ipu_device_num", &IpuOption::ipu_device_num)
.def_readwrite("ipu_micro_batch_size", &IpuOption::ipu_micro_batch_size)
.def_readwrite("ipu_enable_pipelining", &IpuOption::ipu_enable_pipelining)
.def_readwrite("ipu_batches_per_step", &IpuOption::ipu_batches_per_step)
.def_readwrite("ipu_enable_fp16", &IpuOption::ipu_enable_fp16)
.def_readwrite("ipu_replica_num", &IpuOption::ipu_replica_num)
.def_readwrite("ipu_available_memory_proportion",
&IpuOption::ipu_available_memory_proportion)
.def_readwrite("ipu_enable_half_partial",
&IpuOption::ipu_enable_half_partial);
}
void BindPaddleOption(pybind11::module& m) {
BindIpuOption(m);
pybind11::class_<PaddleBackendOption>(m, "PaddleBackendOption")
.def(pybind11::init())
.def_readwrite("enable_log_info", &PaddleBackendOption::enable_log_info)
.def_readwrite("enable_mkldnn", &PaddleBackendOption::enable_mkldnn)
.def_readwrite("enable_trt", &PaddleBackendOption::enable_trt)
.def_readwrite("ipu_option", &PaddleBackendOption::ipu_option)
.def_readwrite("collect_trt_shape",
&PaddleBackendOption::collect_trt_shape)
.def_readwrite("mkldnn_cache_size",
&PaddleBackendOption::mkldnn_cache_size)
.def_readwrite("gpu_mem_init_size",
&PaddleBackendOption::gpu_mem_init_size)
.def("disable_trt_ops", &PaddleBackendOption::DisableTrtOps)
.def("delete_pass", &PaddleBackendOption::DeletePass);
}
} // namespace fastdeploy

View File

@@ -22,8 +22,8 @@ namespace fastdeploy {
void PaddleBackend::BuildOption(const PaddleBackendOption& option) {
option_ = option;
if (option.use_gpu) {
config_.EnableUseGpu(option.gpu_mem_init_size, option.gpu_id);
if (option.device == Device::GPU) {
config_.EnableUseGpu(option.gpu_mem_init_size, option.device_id);
if (option_.external_stream_) {
config_.SetExecStream(option_.external_stream_);
}
@@ -50,7 +50,7 @@ void PaddleBackend::BuildOption(const PaddleBackendOption& option) {
precision, use_static);
SetTRTDynamicShapeToConfig(option);
}
} else if (option.use_ipu) {
} else if (option.device == Device::IPU) {
#ifdef WITH_IPU
config_.EnableIpu(option.ipu_option.ipu_device_num,
option.ipu_option.ipu_micro_batch_size,
@@ -101,14 +101,15 @@ bool PaddleBackend::InitFromPaddle(const std::string& model_buffer,
params_buffer.c_str(), params_buffer.size());
config_.EnableMemoryOptim();
BuildOption(option);
// The input/output information get from predictor is not right, use
// PaddleReader instead now
auto reader = paddle2onnx::PaddleReader(model_buffer.c_str(), model_buffer.size());
auto reader =
paddle2onnx::PaddleReader(model_buffer.c_str(), model_buffer.size());
// If it's a quantized model, and use cpu with mkldnn, automaticaly switch to
// int8 mode
if (reader.is_quantize_model) {
if (option.use_gpu) {
if (option.device == Device::GPU) {
FDWARNING << "The loaded model is a quantized model, while inference on "
"GPU, please use TensorRT backend to get better performance."
<< std::endl;
@@ -158,7 +159,7 @@ bool PaddleBackend::InitFromPaddle(const std::string& model_buffer,
outputs_desc_[i].shape.assign(shape.begin(), shape.end());
outputs_desc_[i].dtype = ReaderDataTypeToFD(reader.outputs[i].dtype);
}
if (option.collect_shape) {
if (option.collect_trt_shape) {
// Set the shape info file.
std::string curr_model_dir = "./";
if (!option.model_from_memory_) {
@@ -221,19 +222,19 @@ bool PaddleBackend::Infer(std::vector<FDTensor>& inputs,
<< inputs_desc_.size() << ")." << std::endl;
return false;
}
RUNTIME_PROFILE_LOOP_H2D_D2H_BEGIN
for (size_t i = 0; i < inputs.size(); ++i) {
auto handle = predictor_->GetInputHandle(inputs[i].name);
ShareTensorFromFDTensor(handle.get(), inputs[i]);
}
RUNTIME_PROFILE_LOOP_BEGIN(1)
predictor_->Run();
RUNTIME_PROFILE_LOOP_END
// output share backend memory only support CPU or GPU
if (option_.use_ipu) {
if (option_.device == Device::IPU) {
copy_to_fd = true;
}
outputs->resize(outputs_desc_.size());
@@ -253,9 +254,10 @@ std::unique_ptr<BaseBackend> PaddleBackend::Clone(RuntimeOption& runtime_option,
std::unique_ptr<BaseBackend> new_backend =
utils::make_unique<PaddleBackend>();
auto casted_backend = dynamic_cast<PaddleBackend*>(new_backend.get());
if (device_id > 0 && option_.use_gpu == true && device_id != option_.gpu_id) {
if (device_id > 0 && (option_.device == Device::GPU) &&
device_id != option_.device_id) {
auto clone_option = option_;
clone_option.gpu_id = device_id;
clone_option.device_id = device_id;
clone_option.external_stream_ = stream;
if (runtime_option.model_from_memory_) {
FDASSERT(
@@ -279,7 +281,7 @@ std::unique_ptr<BaseBackend> PaddleBackend::Clone(RuntimeOption& runtime_option,
}
FDWARNING << "The target device id:" << device_id
<< " is different from current device id:" << option_.gpu_id
<< " is different from current device id:" << option_.device_id
<< ", cannot share memory with current engine." << std::endl;
return new_backend;
}
@@ -347,10 +349,13 @@ void PaddleBackend::CollectShapeRun(
const std::map<std::string, std::vector<int>>& shape) const {
auto input_names = predictor->GetInputNames();
auto input_type = predictor->GetInputTypes();
for (auto name : input_names) {
for (const auto& name : input_names) {
FDASSERT(shape.find(name) != shape.end() &&
input_type.find(name) != input_type.end(),
"Paddle Input name [%s] is not one of the trt dynamic shape.",
"When collect_trt_shape is true, please define max/opt/min shape "
"for model's input:[\"%s\"] by "
"(C++)RuntimeOption.trt_option.SetShape/"
"(Python)RuntimeOption.trt_option.set_shape.",
name.c_str());
auto tensor = predictor->GetInputHandle(name);
auto shape_value = shape.at(name);
@@ -385,4 +390,4 @@ void PaddleBackend::CollectShapeRun(
predictor->Run();
}
} // namespace fastdeploy
} // namespace fastdeploy