[Echo] Support more types of prompt echo (#4022)

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

---------

Co-authored-by: luukunn <83932082+luukunn@users.noreply.github.com>
This commit is contained in:
zhuzixuan
2025-09-11 19:34:44 +08:00
committed by GitHub
parent abdcef30aa
commit a47976e82d
2 changed files with 99 additions and 84 deletions

View File

@@ -276,13 +276,29 @@ class OpenAIServingCompletion:
if dealer is not None:
await self.engine_client.connection_manager.cleanup_request(request_id)
async def _echo_back_prompt(self, request, res, idx):
if res["outputs"].get("send_idx", -1) == 0 and request.echo:
if isinstance(request.prompt, list):
def _echo_back_prompt(self, request, idx):
"""
The echo pre-process of the smallest unit
"""
if isinstance(request.prompt, str):
prompt_text = request.prompt
elif isinstance(request.prompt, list):
if all(isinstance(item, str) for item in request.prompt):
prompt_text = request.prompt[idx]
elif all(isinstance(item, int) for item in request.prompt):
prompt_text = self.engine_client.data_processor.tokenizer.decode(request.prompt)
else:
prompt_text = request.prompt
res["outputs"]["text"] = prompt_text + (res["outputs"]["text"] or "")
prompt_text = self.engine_client.data_processor.tokenizer.decode(request.prompt[idx])
return prompt_text
async def _process_echo_logic(self, request, idx, res_outputs):
"""
Process the echo logic and return the modified text.
"""
if request.echo and res_outputs.get("send_idx", -1) == 0:
prompt_text = self._echo_back_prompt(request, idx)
res_outputs["text"] = prompt_text + (res_outputs["text"] or "")
return res_outputs
def calc_finish_reason(self, max_tokens, token_num, output, tool_called):
if max_tokens is None or token_num != max_tokens:
@@ -384,7 +400,7 @@ class OpenAIServingCompletion:
else:
arrival_time = res["metrics"]["arrival_time"] - inference_start_time[idx]
await self._echo_back_prompt(request, res, idx)
await self._process_echo_logic(request, idx, res["outputs"])
output = res["outputs"]
output_top_logprobs = output["top_logprobs"]
logprobs_res: Optional[CompletionLogprobs] = None
@@ -486,7 +502,6 @@ class OpenAIServingCompletion:
final_res = final_res_batch[idx]
prompt_token_ids = prompt_batched_token_ids[idx]
assert prompt_token_ids is not None
prompt_text = request.prompt
completion_token_ids = completion_batched_token_ids[idx]
output = final_res["outputs"]
@@ -497,12 +512,9 @@ class OpenAIServingCompletion:
aggregated_logprobs = self._create_completion_logprobs(output_top_logprobs, request.logprobs, 0)
if request.echo:
assert prompt_text is not None
prompt_text = self._echo_back_prompt(request, idx)
token_ids = [*prompt_token_ids, *output["token_ids"]]
if isinstance(prompt_text, list):
output_text = prompt_text[idx] + output["text"]
else:
output_text = str(prompt_text) + output["text"]
output_text = prompt_text + output["text"]
else:
token_ids = output["token_ids"]
output_text = output["text"]