[Quantization] Update quantized model deployment examples and update readme. (#377)

* Add PaddleOCR Support

* Add PaddleOCR Support

* Add PaddleOCRv3 Support

* Add PaddleOCRv3 Support

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add PaddleOCRv3 Support

* Add PaddleOCRv3 Supports

* Add PaddleOCRv3 Suport

* Fix Rec diff

* Remove useless functions

* Remove useless comments

* Add PaddleOCRv2 Support

* Add PaddleOCRv3 & PaddleOCRv2 Support

* remove useless parameters

* Add utils of sorting det boxes

* Fix code naming convention

* Fix code naming convention

* Fix code naming convention

* Fix bug in the Classify process

* Imporve OCR Readme

* Fix diff in Cls model

* Update Model Download Link in Readme

* Fix diff in PPOCRv2

* Improve OCR readme

* Imporve OCR readme

* Improve OCR readme

* Improve OCR readme

* Imporve OCR readme

* Improve OCR readme

* Fix conflict

* Add readme for OCRResult

* Improve OCR readme

* Add OCRResult readme

* Improve OCR readme

* Improve OCR readme

* Add Model Quantization Demo

* Fix Model Quantization Readme

* Fix Model Quantization Readme

* Add the function to do PTQ quantization

* Improve quant tools readme

* Improve quant tool readme

* Improve quant tool readme

* Add PaddleInference-GPU for OCR Rec model

* Add QAT method to fastdeploy-quantization tool

* Remove examples/slim for now

* Move configs folder

* Add Quantization Support for Classification Model

* Imporve ways of importing preprocess

* Upload YOLO Benchmark on readme

* Upload YOLO Benchmark on readme

* Upload YOLO Benchmark on readme

* Improve Quantization configs and readme

* Add support for multi-inputs model

* Add backends and params file for YOLOv7

* Add quantized model deployment support for YOLO series

* Fix YOLOv5 quantize readme

* Fix YOLO quantize readme

* Fix YOLO quantize readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Fix bug, change Fronted to ModelFormat

* Change Fronted to ModelFormat

* Add examples to deploy quantized paddleclas models

* Fix readme

* Add quantize Readme

* Add quantize Readme

* Add quantize Readme

* Modify readme of quantization tools

* Modify readme of quantization tools

* Improve quantization tools readme

* Improve quantization readme

* Improve PaddleClas quantized model deployment  readme

* Add PPYOLOE-l quantized deployment examples

* Improve quantization tools readme

* Improve Quantize Readme

* Fix conflicts

* Fix conflicts

* improve readme

* Improve quantization tools and readme

* Improve quantization tools and readme

* Add quantized deployment examples for PaddleSeg model

* Fix cpp readme

* Fix memory leak of reader_wrapper function

* Fix model file name in PaddleClas quantization examples

* Update Runtime and E2E benchmark

* Update Runtime and E2E benchmark

* Rename quantization tools to auto compression tools

* Remove PPYOLOE data when deployed on MKLDNN

* Fix readme

* Support PPYOLOE with OR without NMS and update readme

* Update Readme

* Update configs and readme

* Update configs and readme

* Add Paddle-TensorRT backend in quantized model deploy examples

* Support PPYOLOE+ series
This commit is contained in:
yunyaoXYY
2022-11-02 20:29:29 +08:00
committed by GitHub
parent 9437dec9f5
commit a231c9e7f3
53 changed files with 1514 additions and 521 deletions

View File

@@ -0,0 +1,129 @@
# FastDeploy 一键模型自动化压缩
FastDeploy基于PaddleSlim的Auto Compression Toolkit(ACT), 给用户提供了一键模型自动化压缩的工具.
本文档以Yolov5s为例, 供用户参考如何安装并执行FastDeploy的一键模型自动化压缩.
## 1.安装
### 环境依赖
1.用户参考PaddlePaddle官网, 安装develop版本
```
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
```
2.安装paddleslim-develop版本
```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git & cd PaddleSlim
python setup.py install
```
### fastdeploy-auto-compression 一键模型自动化压缩工具安装方式
用户在当前目录下,运行如下命令:
```
python setup.py install
```
## 2.使用方式
### 一键模型压缩示例
FastDeploy模型一键自动压缩可包含多种策略, 目前主要采用离线量化和量化蒸馏训练, 下面将从离线量化和量化蒸馏两个策略来介绍如何使用一键模型自动化压缩.
#### 离线量化
##### 1. 准备模型和Calibration数据集
用户需要自行准备待量化模型与Calibration数据集.
本例中用户可执行以下命令, 下载待量化的yolov5s.onnx模型和我们为用户准备的Calibration数据集示例.
```shell
# 下载yolov5.onnx
wget https://paddle-slim-models.bj.bcebos.com/act/yolov5s.onnx
# 下载数据集, 此Calibration数据集为COCO val2017中的前320张图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/COCO_val_320.tar.gz
tar -xvf COCO_val_320.tar.gz
```
##### 2.使用fastdeploy_auto_compress命令执行一键模型自动化压缩:
以下命令是对yolov5s模型进行量化, 用户若想量化其他模型, 替换config_path为configs文件夹下的其他模型配置文件即可.
```shell
fastdeploy_auto_compress --config_path=./configs/detection/yolov5s_quant.yaml --method='PTQ' --save_dir='./yolov5s_ptq_model/'
```
【说明】离线量化训练后量化post-training quantization缩写是PTQ
##### 3.参数说明
目前用户只需要提供一个定制的模型config文件,并指定量化方法和量化后的模型保存路径即可完成量化.
| 参数 | 作用 |
| -------------------- | ------------------------------------------------------------ |
| --config_path | 一键压缩所需要的量化配置文件.[详解](./configs/README.md) |
| --method | 压缩方式选择, 离线量化选PTQ量化蒸馏训练选QAT |
| --save_dir | 产出的量化后模型路径, 该模型可直接在FastDeploy部署 |
#### 量化蒸馏训练
##### 1.准备待量化模型和训练数据集
FastDeploy一键模型自动化压缩目前的量化蒸馏训练只支持无标注图片训练训练过程中不支持评估模型精度.
数据集为真实预测场景下的图片,图片数量依据数据集大小来定,尽量覆盖所有部署场景. 此例中我们为用户准备了COCO2017训练集中的前320张图片.
注: 如果用户想通过量化蒸馏训练的方法,获得精度更高的量化模型, 可以自行准备更多的数据, 以及训练更多的轮数.
```shell
# 下载yolov5.onnx
wget https://paddle-slim-models.bj.bcebos.com/act/yolov5s.onnx
# 下载数据集, 此Calibration数据集为COCO2017训练集中的前320张图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/COCO_train_320.tar
tar -xvf COCO_train_320.tar
```
##### 2.使用fastdeploy_auto_compress命令执行一键模型自动化压缩:
以下命令是对yolov5s模型进行量化, 用户若想量化其他模型, 替换config_path为configs文件夹下的其他模型配置文件即可.
```shell
# 执行命令默认为单卡训练训练前请指定单卡GPU, 否则在训练过程中可能会卡住.
export CUDA_VISIBLE_DEVICES=0
fastdeploy_auto_compress --config_path=./configs/detection/yolov5s_quant.yaml --method='QAT' --save_dir='./yolov5s_qat_model/'
```
##### 3.参数说明
目前用户只需要提供一个定制的模型config文件,并指定量化方法和量化后的模型保存路径即可完成量化.
| 参数 | 作用 |
| -------------------- | ------------------------------------------------------------ |
| --config_path | 一键自动化压缩所需要的量化配置文件.[详解](./configs/README.md)|
| --method | 压缩方式选择, 离线量化选PTQ量化蒸馏训练选QAT |
| --save_dir | 产出的量化后模型路径, 该模型可直接在FastDeploy部署 |
## 3. FastDeploy 一键模型自动化压缩 Config文件参考
FastDeploy目前为用户提供了多个模型的压缩[config](./configs/)文件,以及相应的FP32模型, 用户可以直接下载使用并体验.
| Config文件 | 待压缩的FP32模型 | 备注 |
| -------------------- | ------------------------------------------------------------ |----------------------------------------- |
| [mobilenetv1_ssld_quant](./configs/classification/mobilenetv1_ssld_quant.yaml) | [mobilenetv1_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV1_ssld_infer.tgz) | |
| [resnet50_vd_quant](./configs/classification/resnet50_vd_quant.yaml) | [resnet50_vd](https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz) | |
| [yolov5s_quant](./configs/detection/yolov5s_quant.yaml) | [yolov5s](https://paddle-slim-models.bj.bcebos.com/act/yolov5s.onnx) | |
| [yolov6s_quant](./configs/detection/yolov6s_quant.yaml) | [yolov6s](https://paddle-slim-models.bj.bcebos.com/act/yolov6s.onnx) | |
| [yolov7_quant](./configs/detection/yolov7_quant.yaml) | [yolov7](https://paddle-slim-models.bj.bcebos.com/act/yolov7.onnx) | |
| [ppyoloe_withNMS_quant](./configs/detection/ppyoloe_withNMS_quant.yaml) | [ppyoloe_l](https://bj.bcebos.com/v1/paddle-slim-models/act/ppyoloe_crn_l_300e_coco.tar) | 支持PPYOLOE的s,m,l,x系列模型, 从PaddleDetection导出模型时正常导出, 不要去除NMS |
| [ppyoloe_plus_withNMS_quant](./configs/detection/ppyoloe_plus_withNMS_quant.yaml) | [ppyoloe_plus_s](https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_plus_crn_s_80e_coco.tar) | 支持PPYOLOE+的s,m,l,x系列模型, 从PaddleDetection导出模型时正常导出, 不要去除NMS |
| [pp_liteseg_quant](./configs/segmentation/pp_liteseg_quant.yaml) | [pp_liteseg](https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz) | |
## 4. FastDeploy 部署量化模型
用户在获得量化模型之后即可以使用FastDeploy进行部署, 部署文档请参考:
具体请用户参考示例文档:
- [YOLOv5 量化模型部署](../../examples/vision/detection/yolov5/quantize/)
- [YOLOv6 量化模型部署](../../examples/vision/detection/yolov6/quantize/)
- [YOLOv7 量化模型部署](../../examples/vision/detection/yolov7/quantize/)
- [PadddleClas 量化模型部署](../../examples/vision/classification/paddleclas/quantize/)
- [PadddleDetection 量化模型部署](../../examples/vision/detection/paddledetection/quantize/)
- [PadddleSegmentation 量化模型部署](../../examples/vision/segmentation/paddleseg/quantize/)

View File

@@ -0,0 +1,54 @@
# FastDeploy 一键自动化压缩配置文件说明
FastDeploy 一键自动化压缩配置文件中,包含了全局配置,量化蒸馏训练配置,离线量化配置和训练配置.
用户除了直接使用FastDeploy提供在本目录的配置文件外可以按照以下示例,自行修改相关配置文件, 来尝试压缩自己的模型.
## 实例解读
```
# 全局配置
Global:
model_dir: ./ppyoloe_plus_crn_s_80e_coco #输入模型的路径, 用户若需量化自己的模型,替换此处即可
format: paddle #输入模型的格式, paddle模型请选择'paddle', onnx模型选择'onnx'
model_filename: model.pdmodel #量化后转为paddle格式模型的模型名字
params_filename: model.pdiparams #量化后转为paddle格式模型的参数名字
qat_image_path: ./COCO_train_320 #量化蒸馏训练使用的数据集,此例为少量无标签数据, 选自COCO2017训练集中的前320张图片, 做少量数据训练
ptq_image_path: ./COCO_val_320 #离线训练使用的Carlibration数据集, 选自COCO2017验证集中的前320张图片.
input_list: ['image','scale_factor'] #待量化的模型的输入名字
qat_preprocess: ppyoloe_plus_withNMS_image_preprocess #模型量化蒸馏训练时,对数据做的预处理函数, 用户可以在 ../fdquant/dataset.py 中修改或自行编写新的预处理函数, 来支自定义模型的量化
ptq_preprocess: ppyoloe_plus_withNMS_image_preprocess #模型离线量化时,对数据做的预处理函数, 用户可以在 ../fdquant/dataset.py 中修改或自行编写新的预处理函数, 来支自定义模型的量化
qat_batch_size: 4 #量化蒸馏训练时的batch_size, 若为onnx格式的模型,此处只能为1
#量化蒸馏训练配置
Distillation:
alpha: 1.0 #蒸馏loss所占权重
loss: soft_label #蒸馏loss算法
Quantization:
onnx_format: true #是否采用ONNX量化标准格式, 要在FastDeploy上部署, 必须选true
use_pact: true #量化训练是否使用PACT方法
activation_quantize_type: 'moving_average_abs_max' #激活量化方式
quantize_op_types: #需要进行量化的OP
- conv2d
- depthwise_conv2d
#离线量化配置
PTQ:
calibration_method: 'avg' #离线量化的激活校准算法, 可选: avg, abs_max, hist, KL, mse, emd
skip_tensor_list: None #用户可指定跳过某些conv层,不进行量化
#训练参数配置
TrainConfig:
train_iter: 3000
learning_rate: 0.00001
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
target_metric: 0.365
```
## 更多详细配置方法
FastDeploy一键压缩功能由PaddeSlim助力, 更详细的量化配置方法请参考:
[自动化压缩超参详细教程](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/hyperparameter_tutorial.md)

View File

@@ -0,0 +1,50 @@
Global:
model_dir: ./MobileNetV1_ssld_infer/
format: 'paddle'
model_filename: inference.pdmodel
params_filename: inference.pdiparams
qat_image_path: ./ImageNet_val_640
ptq_image_path: ./ImageNet_val_640
input_list: ['input']
qat_preprocess: cls_image_preprocess
ptq_preprocess: cls_image_preprocess
qat_batch_size: 32
Distillation:
alpha: 1.0
loss: l2
node:
- softmax_0.tmp_0
Quantization:
use_pact: true
activation_bits: 8
is_full_quantize: false
onnx_format: True
activation_quantize_type: moving_average_abs_max
weight_quantize_type: channel_wise_abs_max
not_quant_pattern:
- skip_quant
quantize_op_types:
- conv2d
- depthwise_conv2d
weight_bits: 8
TrainConfig:
train_iter: 5000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.015
T_max: 8000
optimizer_builder:
optimizer:
type: Momentum
weight_decay: 0.00002
origin_metric: 0.70898
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None

View File

@@ -0,0 +1,48 @@
Global:
model_dir: ./ResNet50_vd_infer/
format: 'paddle'
model_filename: inference.pdmodel
params_filename: inference.pdiparams
image_path: ./ImageNet_val_640
input_list: ['input']
qat_preprocess: cls_image_preprocess
ptq_preprocess: cls_image_preprocess
qat_batch_size: 32
Distillation:
alpha: 1.0
loss: l2
node:
- softmax_0.tmp_0
Quantization:
use_pact: true
activation_bits: 8
is_full_quantize: false
onnx_format: True
activation_quantize_type: moving_average_abs_max
weight_quantize_type: channel_wise_abs_max
not_quant_pattern:
- skip_quant
quantize_op_types:
- conv2d
- depthwise_conv2d
weight_bits: 8
TrainConfig:
train_iter: 5000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.015
T_max: 8000
optimizer_builder:
optimizer:
type: Momentum
weight_decay: 0.00002
origin_metric: 0.7912
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None

View File

@@ -0,0 +1,39 @@
Global:
model_dir: ./ppyoloe_plus_crn_s_80e_coco
format: paddle
model_filename: model.pdmodel
params_filename: model.pdiparams
qat_image_path: ./COCO_train_320
ptq_image_path: ./COCO_val_320
input_list: ['image','scale_factor']
qat_preprocess: ppyoloe_plus_withNMS_image_preprocess
ptq_preprocess: ppyoloe_plus_withNMS_image_preprocess
qat_batch_size: 4
Distillation:
alpha: 1.0
loss: soft_label
Quantization:
onnx_format: true
use_pact: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None
TrainConfig:
train_iter: 5000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 6000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05

View File

@@ -0,0 +1,39 @@
Global:
model_dir: ./ppyoloe_crn_s_300e_coco
format: paddle
model_filename: model.pdmodel
params_filename: model.pdiparams
qat_image_path: ./COCO_train_320
ptq_image_path: ./COCO_val_320
input_list: ['image','scale_factor']
qat_preprocess: ppyoloe_withNMS_image_preprocess
ptq_preprocess: ppyoloe_withNMS_image_preprocess
qat_batch_size: 4
Distillation:
alpha: 1.0
loss: soft_label
Quantization:
onnx_format: true
use_pact: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None
TrainConfig:
train_iter: 5000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 6000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05

View File

@@ -0,0 +1,37 @@
Global:
model_dir: ./yolov5s.onnx
format: 'onnx'
model_filename: model.pdmodel
params_filename: model.pdiparams
qat_image_path: ./COCO_train_320
ptq_image_path: ./COCO_val_320
input_list: ['x2paddle_images']
qat_preprocess: yolo_image_preprocess
ptq_preprocess: yolo_image_preprocess
qat_batch_size: 1
Distillation:
alpha: 1.0
loss: soft_label
Quantization:
onnx_format: true
use_pact: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None
TrainConfig:
train_iter: 3000
learning_rate: 0.00001
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
target_metric: 0.365

View File

@@ -0,0 +1,38 @@
Global:
model_dir: ./yolov6s.onnx
format: 'onnx'
model_filename: model.pdmodel
params_filename: model.pdiparams
qat_image_path: ./COCO_train_320
ptq_image_path: ./COCO_val_320
input_list: ['x2paddle_image_arrays']
qat_preprocess: yolo_image_preprocess
ptq_preprocess: yolo_image_preprocess
qat_batch_size: 1
Distillation:
alpha: 1.0
loss: soft_label
Quantization:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: ['conv2d_2.w_0', 'conv2d_15.w_0', 'conv2d_46.w_0', 'conv2d_11.w_0', 'conv2d_49.w_0']
TrainConfig:
train_iter: 8000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 8000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 0.00004

View File

@@ -0,0 +1,37 @@
Global:
model_dir: ./yolov7.onnx
format: 'onnx'
model_filename: model.pdmodel
params_filename: model.pdiparams
qat_image_path: ./COCO_train_320
ptq_image_path: ./COCO_val_320
input_list: ['x2paddle_images']
qat_preprocess: yolo_image_preprocess
ptq_preprocess: yolo_image_preprocess
qat_batch_size: 1
Distillation:
alpha: 1.0
loss: soft_label
Quantization:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None
TrainConfig:
train_iter: 3000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 8000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 0.00004

View File

@@ -0,0 +1,37 @@
Global:
model_dir: ./PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer
format: paddle
model_filename: model.pdmodel
params_filename: model.pdiparams
qat_image_path: ./train_stuttgart
ptq_image_path: ./val_munster
input_list: ['x']
qat_preprocess: ppseg_cityscapes_qat_preprocess
ptq_preprocess: ppseg_cityscapes_ptq_preprocess
qat_batch_size: 16
Distillation:
alpha: 1.0
loss: l2
node:
- conv2d_94.tmp_0
Quantization:
onnx_format: True
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None
TrainConfig:
epochs: 10
eval_iter: 180
learning_rate: 0.0005
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05

View File

@@ -0,0 +1,388 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import os
import numpy as np
import random
from PIL import Image, ImageEnhance
import paddle
"""
Preprocess for Yolov5/v6/v7 Series
"""
def generate_scale(im, target_shape):
origin_shape = im.shape[:2]
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(target_shape)
target_size_max = np.max(target_shape)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
return im_scale_y, im_scale_x
def yolo_image_preprocess(img, target_shape=[640, 640]):
# Resize image
im_scale_y, im_scale_x = generate_scale(img, target_shape)
img = cv2.resize(
img,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=cv2.INTER_LINEAR)
# Pad
im_h, im_w = img.shape[:2]
h, w = target_shape[:]
if h != im_h or w != im_w:
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array([114.0, 114.0, 114.0], dtype=np.float32)
canvas[0:im_h, 0:im_w, :] = img.astype(np.float32)
img = canvas
img = np.transpose(img / 255, [2, 0, 1])
return img.astype(np.float32)
"""
Preprocess for PaddleClas model
"""
def cls_resize_short(img, target_size):
img_h, img_w = img.shape[:2]
percent = float(target_size) / min(img_w, img_h)
w = int(round(img_w * percent))
h = int(round(img_h * percent))
return cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)
def crop_image(img, target_size, center):
height, width = img.shape[:2]
size = target_size
if center == True:
w_start = (width - size) // 2
h_start = (height - size) // 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
return img[h_start:h_end, w_start:w_end, :]
def cls_image_preprocess(img):
# resize
img = cls_resize_short(img, target_size=256)
# crop
img = crop_image(img, target_size=224, center=True)
#ToCHWImage & Normalize
img = np.transpose(img / 255, [2, 0, 1])
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img.astype(np.float32)
"""
Preprocess for PPYOLOE
"""
def ppdet_resize_no_keepratio(img, target_shape=[640, 640]):
im_shape = img.shape
resize_h, resize_w = target_shape
im_scale_y = resize_h / im_shape[0]
im_scale_x = resize_w / im_shape[1]
scale_factor = np.asarray([im_scale_y, im_scale_x], dtype=np.float32)
return cv2.resize(
img, None, None, fx=im_scale_x, fy=im_scale_y,
interpolation=2), scale_factor
def ppyoloe_withNMS_image_preprocess(img):
img, scale_factor = ppdet_resize_no_keepratio(img, target_shape=[640, 640])
img = np.transpose(img / 255, [2, 0, 1])
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img.astype(np.float32), scale_factor
def ppyoloe_plus_withNMS_image_preprocess(img):
img, scale_factor = ppdet_resize_no_keepratio(img, target_shape=[640, 640])
img = np.transpose(img / 255, [2, 0, 1])
return img.astype(np.float32), scale_factor
"""
Preprocess for PP_LiteSeg
"""
def ppseg_cityscapes_ptq_preprocess(img):
#ToCHWImage & Normalize
img = np.transpose(img / 255.0, [2, 0, 1])
img_mean = np.array([0.5, 0.5, 0.5]).reshape((3, 1, 1))
img_std = np.array([0.5, 0.5, 0.5]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img.astype(np.float32)
def ResizeStepScaling(img,
min_scale_factor=0.75,
max_scale_factor=1.25,
scale_step_size=0.25):
# refer form ppseg
if min_scale_factor == max_scale_factor:
scale_factor = min_scale_factor
elif scale_step_size == 0:
scale_factor = np.random.uniform(min_scale_factor, max_scale_factor)
else:
num_steps = int((max_scale_factor - min_scale_factor) / scale_step_size
+ 1)
scale_factors = np.linspace(min_scale_factor, max_scale_factor,
num_steps).tolist()
np.random.shuffle(scale_factors)
scale_factor = scale_factors[0]
w = int(round(scale_factor * img.shape[1]))
h = int(round(scale_factor * img.shape[0]))
img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)
return img
def RandomPaddingCrop(img,
crop_size=(512, 512),
im_padding_value=(127.5, 127.5, 127.5),
label_padding_value=255):
if isinstance(crop_size, list) or isinstance(crop_size, tuple):
if len(crop_size) != 2:
raise ValueError(
'Type of `crop_size` is list or tuple. It should include 2 elements, but it is {}'
.format(crop_size))
else:
raise TypeError(
"The type of `crop_size` is invalid. It should be list or tuple, but it is {}"
.format(type(crop_size)))
if isinstance(crop_size, int):
crop_width = crop_size
crop_height = crop_size
else:
crop_width = crop_size[0]
crop_height = crop_size[1]
img_height = img.shape[0]
img_width = img.shape[1]
if img_height == crop_height and img_width == crop_width:
return img
else:
pad_height = max(crop_height - img_height, 0)
pad_width = max(crop_width - img_width, 0)
if (pad_height > 0 or pad_width > 0):
img = cv2.copyMakeBorder(
img,
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=im_padding_value)
img_height = img.shape[0]
img_width = img.shape[1]
if crop_height > 0 and crop_width > 0:
h_off = np.random.randint(img_height - crop_height + 1)
w_off = np.random.randint(img_width - crop_width + 1)
img = img[h_off:(crop_height + h_off), w_off:(w_off + crop_width
), :]
return img
def RandomHorizontalFlip(img, prob=0.5):
if random.random() < prob:
if len(img.shape) == 3:
img = img[:, ::-1, :]
elif len(img.shape) == 2:
img = img[:, ::-1]
return img
else:
return img
def brightness(im, brightness_lower, brightness_upper):
brightness_delta = np.random.uniform(brightness_lower, brightness_upper)
im = ImageEnhance.Brightness(im).enhance(brightness_delta)
return im
def contrast(im, contrast_lower, contrast_upper):
contrast_delta = np.random.uniform(contrast_lower, contrast_upper)
im = ImageEnhance.Contrast(im).enhance(contrast_delta)
return im
def saturation(im, saturation_lower, saturation_upper):
saturation_delta = np.random.uniform(saturation_lower, saturation_upper)
im = ImageEnhance.Color(im).enhance(saturation_delta)
return im
def hue(im, hue_lower, hue_upper):
hue_delta = np.random.uniform(hue_lower, hue_upper)
im = np.array(im.convert('HSV'))
im[:, :, 0] = im[:, :, 0] + hue_delta
im = Image.fromarray(im, mode='HSV').convert('RGB')
return im
def sharpness(im, sharpness_lower, sharpness_upper):
sharpness_delta = np.random.uniform(sharpness_lower, sharpness_upper)
im = ImageEnhance.Sharpness(im).enhance(sharpness_delta)
return im
def RandomDistort(img,
brightness_range=0.5,
brightness_prob=0.5,
contrast_range=0.5,
contrast_prob=0.5,
saturation_range=0.5,
saturation_prob=0.5,
hue_range=18,
hue_prob=0.5,
sharpness_range=0.5,
sharpness_prob=0):
brightness_lower = 1 - brightness_range
brightness_upper = 1 + brightness_range
contrast_lower = 1 - contrast_range
contrast_upper = 1 + contrast_range
saturation_lower = 1 - saturation_range
saturation_upper = 1 + saturation_range
hue_lower = -hue_range
hue_upper = hue_range
sharpness_lower = 1 - sharpness_range
sharpness_upper = 1 + sharpness_range
ops = [brightness, contrast, saturation, hue, sharpness]
random.shuffle(ops)
params_dict = {
'brightness': {
'brightness_lower': brightness_lower,
'brightness_upper': brightness_upper
},
'contrast': {
'contrast_lower': contrast_lower,
'contrast_upper': contrast_upper
},
'saturation': {
'saturation_lower': saturation_lower,
'saturation_upper': saturation_upper
},
'hue': {
'hue_lower': hue_lower,
'hue_upper': hue_upper
},
'sharpness': {
'sharpness_lower': sharpness_lower,
'sharpness_upper': sharpness_upper,
}
}
prob_dict = {
'brightness': brightness_prob,
'contrast': contrast_prob,
'saturation': saturation_prob,
'hue': hue_prob,
'sharpness': sharpness_prob
}
img = img.astype('uint8')
img = Image.fromarray(img)
for id in range(len(ops)):
params = params_dict[ops[id].__name__]
prob = prob_dict[ops[id].__name__]
params['im'] = img
if np.random.uniform(0, 1) < prob:
img = ops[id](**params)
img = np.asarray(img).astype('float32')
return img
def ppseg_cityscapes_qat_preprocess(img):
min_scale_factor = 0.5
max_scale_factor = 2.0
scale_step_size = 0.25
crop_size = (1024, 512)
brightness_range = 0.5
contrast_range = 0.5
saturation_range = 0.5
img = ResizeStepScaling(
img, min_scale_factor=0.5, max_scale_factor=2.0, scale_step_size=0.25)
img = RandomPaddingCrop(img, crop_size=(1024, 512))
img = RandomHorizontalFlip(img)
img = RandomDistort(
img, brightness_range=0.5, contrast_range=0.5, saturation_range=0.5)
img = np.transpose(img / 255.0, [2, 0, 1])
img_mean = np.array([0.5, 0.5, 0.5]).reshape((3, 1, 1))
img_std = np.array([0.5, 0.5, 0.5]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img.astype(np.float32)

View File

@@ -0,0 +1,195 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import time
import argparse
from tqdm import tqdm
import paddle
from paddleslim.common import load_config, load_onnx_model
from paddleslim.auto_compression import AutoCompression
from paddleslim.quant import quant_post_static
from fd_auto_compress.dataset import *
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.",
required=True)
parser.add_argument(
'--method',
type=str,
default=None,
help="choose PTQ or QAT as quantization method",
required=True)
parser.add_argument(
'--save_dir',
type=str,
default='output',
help="directory to save compressed model.")
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
return parser
def reader_wrapper(reader, input_list):
if isinstance(input_list, list) and len(input_list) == 1:
input_name = input_list[0]
def gen():
in_dict = {}
for i, data in enumerate(reader()):
imgs = np.array(data[0])
in_dict[input_name] = imgs
yield in_dict
return gen
if isinstance(input_list, list) and len(input_list) > 1:
def gen():
for idx, data in enumerate(reader()):
in_dict = {}
for i in range(len(input_list)):
intput_name = input_list[i]
feed_data = np.array(data[0][i])
in_dict[intput_name] = feed_data
yield in_dict
return gen
def main():
time_s = time.time()
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
paddle.set_device(FLAGS.devices)
global global_config
if FLAGS.method == 'QAT':
all_config = load_config(FLAGS.config_path)
assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}"
global_config = all_config["Global"]
input_list = global_config['input_list']
assert os.path.exists(global_config[
'qat_image_path']), "image_path does not exist!"
paddle.vision.image.set_image_backend('cv2')
# transform could be customized.
train_dataset = paddle.vision.datasets.ImageFolder(
global_config['qat_image_path'],
transform=eval(global_config['qat_preprocess']))
train_loader = paddle.io.DataLoader(
train_dataset,
batch_size=global_config['qat_batch_size'],
shuffle=True,
drop_last=True,
num_workers=0)
train_loader = reader_wrapper(train_loader, input_list=input_list)
eval_func = None
# ACT compression
ac = AutoCompression(
model_dir=global_config['model_dir'],
model_filename=global_config['model_filename'],
params_filename=global_config['params_filename'],
train_dataloader=train_loader,
save_dir=FLAGS.save_dir,
config=all_config,
eval_callback=eval_func)
ac.compress()
# PTQ compression
if FLAGS.method == 'PTQ':
# Read Global config and prepare dataset
all_config = load_config(FLAGS.config_path)
assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}"
global_config = all_config["Global"]
input_list = global_config['input_list']
assert os.path.exists(global_config[
'ptq_image_path']), "image_path does not exist!"
paddle.vision.image.set_image_backend('cv2')
# transform could be customized.
val_dataset = paddle.vision.datasets.ImageFolder(
global_config['ptq_image_path'],
transform=eval(global_config['ptq_preprocess']))
val_loader = paddle.io.DataLoader(
val_dataset,
batch_size=1,
shuffle=True,
drop_last=True,
num_workers=0)
val_loader = reader_wrapper(val_loader, input_list=input_list)
# Read PTQ config
assert "PTQ" in all_config, f"Key 'PTQ' not found in config file. \n{all_config}"
ptq_config = all_config["PTQ"]
# Inititalize the executor
place = paddle.CUDAPlace(
0) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
exe = paddle.static.Executor(place)
# Read ONNX or PADDLE format model
if global_config['format'] == 'onnx':
load_onnx_model(global_config["model_dir"])
inference_model_path = global_config["model_dir"].rstrip().rstrip(
'.onnx') + '_infer'
else:
inference_model_path = global_config["model_dir"].rstrip('/')
quant_post_static(
executor=exe,
model_dir=inference_model_path,
quantize_model_path=FLAGS.save_dir,
data_loader=val_loader,
model_filename=global_config["model_filename"],
params_filename=global_config["params_filename"],
batch_size=32,
batch_nums=10,
algo=ptq_config['calibration_method'],
hist_percent=0.999,
is_full_quantize=False,
bias_correction=False,
onnx_format=True,
skip_tensor_list=ptq_config['skip_tensor_list']
if 'skip_tensor_list' in ptq_config else None)
time_total = time.time() - time_s
print("Finish Compression, total time used is : ", time_total, "seconds.")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1 @@
paddleslim

View File

@@ -0,0 +1,26 @@
import setuptools
import fd_auto_compress
long_description = "fastdeploy-auto-compression is a toolkit for model auto compression of FastDeploy.\n\n"
long_description += "Usage: fastdeploy_auto_compress --config_path=./yolov7_tiny_qat_dis.yaml --method='QAT' --save_dir='../v7_qat_outmodel/' \n"
with open("requirements.txt") as fin:
REQUIRED_PACKAGES = fin.read()
setuptools.setup(
name="fastdeploy-auto-compression", # name of package
description="A toolkit for model auto compression of FastDeploy.",
long_description=long_description,
long_description_content_type="text/plain",
packages=setuptools.find_packages(),
install_requires=REQUIRED_PACKAGES,
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
],
license='Apache 2.0',
entry_points={
'console_scripts':
['fastdeploy_auto_compress=fd_auto_compress.fd_auto_compress:main', ]
})