mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Quantization] Update quantized model deployment examples and update readme. (#377)
* Add PaddleOCR Support * Add PaddleOCR Support * Add PaddleOCRv3 Support * Add PaddleOCRv3 Support * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleOCRv3 Support * Add PaddleOCRv3 Supports * Add PaddleOCRv3 Suport * Fix Rec diff * Remove useless functions * Remove useless comments * Add PaddleOCRv2 Support * Add PaddleOCRv3 & PaddleOCRv2 Support * remove useless parameters * Add utils of sorting det boxes * Fix code naming convention * Fix code naming convention * Fix code naming convention * Fix bug in the Classify process * Imporve OCR Readme * Fix diff in Cls model * Update Model Download Link in Readme * Fix diff in PPOCRv2 * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Fix conflict * Add readme for OCRResult * Improve OCR readme * Add OCRResult readme * Improve OCR readme * Improve OCR readme * Add Model Quantization Demo * Fix Model Quantization Readme * Fix Model Quantization Readme * Add the function to do PTQ quantization * Improve quant tools readme * Improve quant tool readme * Improve quant tool readme * Add PaddleInference-GPU for OCR Rec model * Add QAT method to fastdeploy-quantization tool * Remove examples/slim for now * Move configs folder * Add Quantization Support for Classification Model * Imporve ways of importing preprocess * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Improve Quantization configs and readme * Add support for multi-inputs model * Add backends and params file for YOLOv7 * Add quantized model deployment support for YOLO series * Fix YOLOv5 quantize readme * Fix YOLO quantize readme * Fix YOLO quantize readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Fix bug, change Fronted to ModelFormat * Change Fronted to ModelFormat * Add examples to deploy quantized paddleclas models * Fix readme * Add quantize Readme * Add quantize Readme * Add quantize Readme * Modify readme of quantization tools * Modify readme of quantization tools * Improve quantization tools readme * Improve quantization readme * Improve PaddleClas quantized model deployment readme * Add PPYOLOE-l quantized deployment examples * Improve quantization tools readme * Improve Quantize Readme * Fix conflicts * Fix conflicts * improve readme * Improve quantization tools and readme * Improve quantization tools and readme * Add quantized deployment examples for PaddleSeg model * Fix cpp readme * Fix memory leak of reader_wrapper function * Fix model file name in PaddleClas quantization examples * Update Runtime and E2E benchmark * Update Runtime and E2E benchmark * Rename quantization tools to auto compression tools * Remove PPYOLOE data when deployed on MKLDNN * Fix readme * Support PPYOLOE with OR without NMS and update readme * Update Readme * Update configs and readme * Update configs and readme * Add Paddle-TensorRT backend in quantized model deploy examples * Support PPYOLOE+ series
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
|
||||
### 量化模型准备
|
||||
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
|
||||
- 2. 用户可以使用FastDeploy提供的[一键模型量化工具](../../../../../../tools/quantization/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
|
||||
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
|
||||
|
||||
|
||||
## 以量化后的PP-YOLOE-l模型为例, 进行部署
|
||||
@@ -26,4 +26,6 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
||||
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device cpu --backend ort
|
||||
# 在GPU上使用TensorRT推理量化模型
|
||||
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device gpu --backend trt
|
||||
# 在GPU上使用Paddle-TensorRT推理量化模型
|
||||
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device gpu --backend pptrt
|
||||
```
|
||||
|
@@ -49,6 +49,11 @@ def build_option(args):
|
||||
option.set_trt_cache_file(os.path.join(args.model, "model.trt"))
|
||||
option.set_trt_input_shape("image", min_shape=[1, 3, 640, 640])
|
||||
option.set_trt_input_shape("scale_factor", min_shape=[1, 2])
|
||||
elif args.backend.lower() == "pptrt":
|
||||
assert args.device.lower(
|
||||
) == "gpu", "TensorRT backend require inference on device GPU."
|
||||
option.use_trt_backend()
|
||||
option.enable_paddle_to_trt()
|
||||
elif args.backend.lower() == "ort":
|
||||
option.use_ort_backend()
|
||||
elif args.backend.lower() == "paddle":
|
||||
|
Reference in New Issue
Block a user