Add PaddleSeg doc and infer.cc demo (#114)

* Update README.md

* Update README.md

* Update README.md

* Create README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add evaluation calculate time and fix some bugs

* Update classification __init__

* Move to ppseg

* Add segmentation doc

* Add PaddleClas infer.py

* Update PaddleClas infer.py

* Delete .infer.py.swp

* Add PaddleClas infer.cc

* Update README.md

* Update README.md

* Update README.md

* Update infer.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add PaddleSeg doc and infer.cc demo

* Update README.md

* Update README.md

* Update README.md

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-08-15 15:24:38 +08:00
committed by GitHub
parent 773d6bb938
commit a016ef99ce
10 changed files with 159 additions and 150 deletions

View File

@@ -14,34 +14,45 @@
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseCpu() auto model =
fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "deploy.yaml";
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::ClassifyResult res;
fastdeploy::vision::SegmentationResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
res.Str();
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void GpuInfer(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const std::string& image_file) {
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "deploy.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::classification::PaddleClasModel(
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
@@ -49,25 +60,30 @@ void GpuInfer(const std::string& model_file, const std::string& params_file,
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::ClassifyResult res;
fastdeploy::vision::SegmentationResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
res.Str();
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void TrtInfer(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const std::string& image_file) {
void TrtInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "deploy.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("inputs", [ 1, 3, 224, 224 ], [ 1, 3, 224, 224 ],
[ 1, 3, 224, 224 ]);
auto model = fastdeploy::vision::classification::PaddleClasModel(
option.SetTrtInputShape("x", {1, 3, 256, 256}, {1, 3, 1024, 1024},
{1, 3, 2048, 2048});
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
@@ -75,40 +91,37 @@ void TrtInfer(const std::string& model_file, const std::string& params_file,
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::ClassifyResult res;
fastdeploy::vision::SegmentationResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
res.Str();
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_demo ./ResNet50_vd ./test.jpeg 0"
<< std::endl;
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./ppseg_model_dir ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
std::string model_file =
argv[1] + "/" + "model.pdmodel" std::string params_file =
argv[1] + "/" + "model.pdiparams" std::string config_file =
argv[1] + "/" + "inference_cls.yaml" std::string image_file =
argv[2] if (std::atoi(argv[3]) == 0) {
CpuInfer(model_file, params_file, config_file, image_file);
}
else if (std::atoi(argv[3]) == 1) {
GpuInfer(model_file, params_file, config_file, image_file);
}
else if (std::atoi(argv[3]) == 2) {
TrtInfer(model_file, params_file, config_file, image_file);
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2]);
}
return 0;
}