mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 10:00:29 +08:00
first commit
This commit is contained in:
455
third_party/pybind11/docs/advanced/pycpp/numpy.rst
vendored
Normal file
455
third_party/pybind11/docs/advanced/pycpp/numpy.rst
vendored
Normal file
@@ -0,0 +1,455 @@
|
||||
.. _numpy:
|
||||
|
||||
NumPy
|
||||
#####
|
||||
|
||||
Buffer protocol
|
||||
===============
|
||||
|
||||
Python supports an extremely general and convenient approach for exchanging
|
||||
data between plugin libraries. Types can expose a buffer view [#f2]_, which
|
||||
provides fast direct access to the raw internal data representation. Suppose we
|
||||
want to bind the following simplistic Matrix class:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Matrix {
|
||||
public:
|
||||
Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
|
||||
m_data = new float[rows*cols];
|
||||
}
|
||||
float *data() { return m_data; }
|
||||
size_t rows() const { return m_rows; }
|
||||
size_t cols() const { return m_cols; }
|
||||
private:
|
||||
size_t m_rows, m_cols;
|
||||
float *m_data;
|
||||
};
|
||||
|
||||
The following binding code exposes the ``Matrix`` contents as a buffer object,
|
||||
making it possible to cast Matrices into NumPy arrays. It is even possible to
|
||||
completely avoid copy operations with Python expressions like
|
||||
``np.array(matrix_instance, copy = False)``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
|
||||
.def_buffer([](Matrix &m) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
m.data(), /* Pointer to buffer */
|
||||
sizeof(float), /* Size of one scalar */
|
||||
py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
|
||||
2, /* Number of dimensions */
|
||||
{ m.rows(), m.cols() }, /* Buffer dimensions */
|
||||
{ sizeof(float) * m.cols(), /* Strides (in bytes) for each index */
|
||||
sizeof(float) }
|
||||
);
|
||||
});
|
||||
|
||||
Supporting the buffer protocol in a new type involves specifying the special
|
||||
``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the
|
||||
``def_buffer()`` method with a lambda function that creates a
|
||||
``py::buffer_info`` description record on demand describing a given matrix
|
||||
instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol
|
||||
specification.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct buffer_info {
|
||||
void *ptr;
|
||||
py::ssize_t itemsize;
|
||||
std::string format;
|
||||
py::ssize_t ndim;
|
||||
std::vector<py::ssize_t> shape;
|
||||
std::vector<py::ssize_t> strides;
|
||||
};
|
||||
|
||||
To create a C++ function that can take a Python buffer object as an argument,
|
||||
simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
|
||||
in a great variety of configurations, hence some safety checks are usually
|
||||
necessary in the function body. Below, you can see a basic example on how to
|
||||
define a custom constructor for the Eigen double precision matrix
|
||||
(``Eigen::MatrixXd``) type, which supports initialization from compatible
|
||||
buffer objects (e.g. a NumPy matrix).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* Bind MatrixXd (or some other Eigen type) to Python */
|
||||
typedef Eigen::MatrixXd Matrix;
|
||||
|
||||
typedef Matrix::Scalar Scalar;
|
||||
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
|
||||
|
||||
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
|
||||
.def(py::init([](py::buffer b) {
|
||||
typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
|
||||
|
||||
/* Request a buffer descriptor from Python */
|
||||
py::buffer_info info = b.request();
|
||||
|
||||
/* Some basic validation checks ... */
|
||||
if (info.format != py::format_descriptor<Scalar>::format())
|
||||
throw std::runtime_error("Incompatible format: expected a double array!");
|
||||
|
||||
if (info.ndim != 2)
|
||||
throw std::runtime_error("Incompatible buffer dimension!");
|
||||
|
||||
auto strides = Strides(
|
||||
info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar),
|
||||
info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar));
|
||||
|
||||
auto map = Eigen::Map<Matrix, 0, Strides>(
|
||||
static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
|
||||
|
||||
return Matrix(map);
|
||||
}));
|
||||
|
||||
For reference, the ``def_buffer()`` call for this Eigen data type should look
|
||||
as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
.def_buffer([](Matrix &m) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
m.data(), /* Pointer to buffer */
|
||||
sizeof(Scalar), /* Size of one scalar */
|
||||
py::format_descriptor<Scalar>::format(), /* Python struct-style format descriptor */
|
||||
2, /* Number of dimensions */
|
||||
{ m.rows(), m.cols() }, /* Buffer dimensions */
|
||||
{ sizeof(Scalar) * (rowMajor ? m.cols() : 1),
|
||||
sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
|
||||
/* Strides (in bytes) for each index */
|
||||
);
|
||||
})
|
||||
|
||||
For a much easier approach of binding Eigen types (although with some
|
||||
limitations), refer to the section on :doc:`/advanced/cast/eigen`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_buffers.cpp` contains a complete example
|
||||
that demonstrates using the buffer protocol with pybind11 in more detail.
|
||||
|
||||
.. [#f2] http://docs.python.org/3/c-api/buffer.html
|
||||
|
||||
Arrays
|
||||
======
|
||||
|
||||
By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
|
||||
restrict the function so that it only accepts NumPy arrays (rather than any
|
||||
type of Python object satisfying the buffer protocol).
|
||||
|
||||
In many situations, we want to define a function which only accepts a NumPy
|
||||
array of a certain data type. This is possible via the ``py::array_t<T>``
|
||||
template. For instance, the following function requires the argument to be a
|
||||
NumPy array containing double precision values.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double> array);
|
||||
|
||||
When it is invoked with a different type (e.g. an integer or a list of
|
||||
integers), the binding code will attempt to cast the input into a NumPy array
|
||||
of the requested type. This feature requires the :file:`pybind11/numpy.h`
|
||||
header to be included. Note that :file:`pybind11/numpy.h` does not depend on
|
||||
the NumPy headers, and thus can be used without declaring a build-time
|
||||
dependency on NumPy; NumPy>=1.7.0 is a runtime dependency.
|
||||
|
||||
Data in NumPy arrays is not guaranteed to packed in a dense manner;
|
||||
furthermore, entries can be separated by arbitrary column and row strides.
|
||||
Sometimes, it can be useful to require a function to only accept dense arrays
|
||||
using either the C (row-major) or Fortran (column-major) ordering. This can be
|
||||
accomplished via a second template argument with values ``py::array::c_style``
|
||||
or ``py::array::f_style``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
|
||||
|
||||
The ``py::array::forcecast`` argument is the default value of the second
|
||||
template parameter, and it ensures that non-conforming arguments are converted
|
||||
into an array satisfying the specified requirements instead of trying the next
|
||||
function overload.
|
||||
|
||||
There are several methods on arrays; the methods listed below under references
|
||||
work, as well as the following functions based on the NumPy API:
|
||||
|
||||
- ``.dtype()`` returns the type of the contained values.
|
||||
|
||||
- ``.strides()`` returns a pointer to the strides of the array (optionally pass
|
||||
an integer axis to get a number).
|
||||
|
||||
- ``.flags()`` returns the flag settings. ``.writable()`` and ``.owndata()``
|
||||
are directly available.
|
||||
|
||||
- ``.offset_at()`` returns the offset (optionally pass indices).
|
||||
|
||||
- ``.squeeze()`` returns a view with length-1 axes removed.
|
||||
|
||||
- ``.view(dtype)`` returns a view of the array with a different dtype.
|
||||
|
||||
- ``.reshape({i, j, ...})`` returns a view of the array with a different shape.
|
||||
``.resize({...})`` is also available.
|
||||
|
||||
- ``.index_at(i, j, ...)`` gets the count from the beginning to a given index.
|
||||
|
||||
|
||||
There are also several methods for getting references (described below).
|
||||
|
||||
Structured types
|
||||
================
|
||||
|
||||
In order for ``py::array_t`` to work with structured (record) types, we first
|
||||
need to register the memory layout of the type. This can be done via
|
||||
``PYBIND11_NUMPY_DTYPE`` macro, called in the plugin definition code, which
|
||||
expects the type followed by field names:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct A {
|
||||
int x;
|
||||
double y;
|
||||
};
|
||||
|
||||
struct B {
|
||||
int z;
|
||||
A a;
|
||||
};
|
||||
|
||||
// ...
|
||||
PYBIND11_MODULE(test, m) {
|
||||
// ...
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(A, x, y);
|
||||
PYBIND11_NUMPY_DTYPE(B, z, a);
|
||||
/* now both A and B can be used as template arguments to py::array_t */
|
||||
}
|
||||
|
||||
The structure should consist of fundamental arithmetic types, ``std::complex``,
|
||||
previously registered substructures, and arrays of any of the above. Both C++
|
||||
arrays and ``std::array`` are supported. While there is a static assertion to
|
||||
prevent many types of unsupported structures, it is still the user's
|
||||
responsibility to use only "plain" structures that can be safely manipulated as
|
||||
raw memory without violating invariants.
|
||||
|
||||
Vectorizing functions
|
||||
=====================
|
||||
|
||||
Suppose we want to bind a function with the following signature to Python so
|
||||
that it can process arbitrary NumPy array arguments (vectors, matrices, general
|
||||
N-D arrays) in addition to its normal arguments:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
double my_func(int x, float y, double z);
|
||||
|
||||
After including the ``pybind11/numpy.h`` header, this is extremely simple:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("vectorized_func", py::vectorize(my_func));
|
||||
|
||||
Invoking the function like below causes 4 calls to be made to ``my_func`` with
|
||||
each of the array elements. The significant advantage of this compared to
|
||||
solutions like ``numpy.vectorize()`` is that the loop over the elements runs
|
||||
entirely on the C++ side and can be crunched down into a tight, optimized loop
|
||||
by the compiler. The result is returned as a NumPy array of type
|
||||
``numpy.dtype.float64``.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> x = np.array([[1, 3], [5, 7]])
|
||||
>>> y = np.array([[2, 4], [6, 8]])
|
||||
>>> z = 3
|
||||
>>> result = vectorized_func(x, y, z)
|
||||
|
||||
The scalar argument ``z`` is transparently replicated 4 times. The input
|
||||
arrays ``x`` and ``y`` are automatically converted into the right types (they
|
||||
are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
|
||||
``numpy.dtype.float32``, respectively).
|
||||
|
||||
.. note::
|
||||
|
||||
Only arithmetic, complex, and POD types passed by value or by ``const &``
|
||||
reference are vectorized; all other arguments are passed through as-is.
|
||||
Functions taking rvalue reference arguments cannot be vectorized.
|
||||
|
||||
In cases where the computation is too complicated to be reduced to
|
||||
``vectorize``, it will be necessary to create and access the buffer contents
|
||||
manually. The following snippet contains a complete example that shows how this
|
||||
works (the code is somewhat contrived, since it could have been done more
|
||||
simply using ``vectorize``).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/numpy.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
|
||||
py::buffer_info buf1 = input1.request(), buf2 = input2.request();
|
||||
|
||||
if (buf1.ndim != 1 || buf2.ndim != 1)
|
||||
throw std::runtime_error("Number of dimensions must be one");
|
||||
|
||||
if (buf1.size != buf2.size)
|
||||
throw std::runtime_error("Input shapes must match");
|
||||
|
||||
/* No pointer is passed, so NumPy will allocate the buffer */
|
||||
auto result = py::array_t<double>(buf1.size);
|
||||
|
||||
py::buffer_info buf3 = result.request();
|
||||
|
||||
double *ptr1 = static_cast<double *>(buf1.ptr);
|
||||
double *ptr2 = static_cast<double *>(buf2.ptr);
|
||||
double *ptr3 = static_cast<double *>(buf3.ptr);
|
||||
|
||||
for (size_t idx = 0; idx < buf1.shape[0]; idx++)
|
||||
ptr3[idx] = ptr1[idx] + ptr2[idx];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(test, m) {
|
||||
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
|
||||
}
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
|
||||
example that demonstrates using :func:`vectorize` in more detail.
|
||||
|
||||
Direct access
|
||||
=============
|
||||
|
||||
For performance reasons, particularly when dealing with very large arrays, it
|
||||
is often desirable to directly access array elements without internal checking
|
||||
of dimensions and bounds on every access when indices are known to be already
|
||||
valid. To avoid such checks, the ``array`` class and ``array_t<T>`` template
|
||||
class offer an unchecked proxy object that can be used for this unchecked
|
||||
access through the ``unchecked<N>`` and ``mutable_unchecked<N>`` methods,
|
||||
where ``N`` gives the required dimensionality of the array:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("sum_3d", [](py::array_t<double> x) {
|
||||
auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable
|
||||
double sum = 0;
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
for (py::ssize_t k = 0; k < r.shape(2); k++)
|
||||
sum += r(i, j, k);
|
||||
return sum;
|
||||
});
|
||||
m.def("increment_3d", [](py::array_t<double> x) {
|
||||
auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
for (py::ssize_t k = 0; k < r.shape(2); k++)
|
||||
r(i, j, k) += 1.0;
|
||||
}, py::arg().noconvert());
|
||||
|
||||
To obtain the proxy from an ``array`` object, you must specify both the data
|
||||
type and number of dimensions as template arguments, such as ``auto r =
|
||||
myarray.mutable_unchecked<float, 2>()``.
|
||||
|
||||
If the number of dimensions is not known at compile time, you can omit the
|
||||
dimensions template parameter (i.e. calling ``arr_t.unchecked()`` or
|
||||
``arr.unchecked<T>()``. This will give you a proxy object that works in the
|
||||
same way, but results in less optimizable code and thus a small efficiency
|
||||
loss in tight loops.
|
||||
|
||||
Note that the returned proxy object directly references the array's data, and
|
||||
only reads its shape, strides, and writeable flag when constructed. You must
|
||||
take care to ensure that the referenced array is not destroyed or reshaped for
|
||||
the duration of the returned object, typically by limiting the scope of the
|
||||
returned instance.
|
||||
|
||||
The returned proxy object supports some of the same methods as ``py::array`` so
|
||||
that it can be used as a drop-in replacement for some existing, index-checked
|
||||
uses of ``py::array``:
|
||||
|
||||
- ``.ndim()`` returns the number of dimensions
|
||||
|
||||
- ``.data(1, 2, ...)`` and ``r.mutable_data(1, 2, ...)``` returns a pointer to
|
||||
the ``const T`` or ``T`` data, respectively, at the given indices. The
|
||||
latter is only available to proxies obtained via ``a.mutable_unchecked()``.
|
||||
|
||||
- ``.itemsize()`` returns the size of an item in bytes, i.e. ``sizeof(T)``.
|
||||
|
||||
- ``.ndim()`` returns the number of dimensions.
|
||||
|
||||
- ``.shape(n)`` returns the size of dimension ``n``
|
||||
|
||||
- ``.size()`` returns the total number of elements (i.e. the product of the shapes).
|
||||
|
||||
- ``.nbytes()`` returns the number of bytes used by the referenced elements
|
||||
(i.e. ``itemsize()`` times ``size()``).
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_numpy_array.cpp` contains additional examples
|
||||
demonstrating the use of this feature.
|
||||
|
||||
Ellipsis
|
||||
========
|
||||
|
||||
Python provides a convenient ``...`` ellipsis notation that is often used to
|
||||
slice multidimensional arrays. For instance, the following snippet extracts the
|
||||
middle dimensions of a tensor with the first and last index set to zero.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = ... # a NumPy array
|
||||
b = a[0, ..., 0]
|
||||
|
||||
The function ``py::ellipsis()`` function can be used to perform the same
|
||||
operation on the C++ side:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::array a = /* A NumPy array */;
|
||||
py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];
|
||||
|
||||
|
||||
Memory view
|
||||
===========
|
||||
|
||||
For a case when we simply want to provide a direct accessor to C/C++ buffer
|
||||
without a concrete class object, we can return a ``memoryview`` object. Suppose
|
||||
we wish to expose a ``memoryview`` for 2x4 uint8_t array, we can do the
|
||||
following:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
const uint8_t buffer[] = {
|
||||
0, 1, 2, 3,
|
||||
4, 5, 6, 7
|
||||
};
|
||||
m.def("get_memoryview2d", []() {
|
||||
return py::memoryview::from_buffer(
|
||||
buffer, // buffer pointer
|
||||
{ 2, 4 }, // shape (rows, cols)
|
||||
{ sizeof(uint8_t) * 4, sizeof(uint8_t) } // strides in bytes
|
||||
);
|
||||
})
|
||||
|
||||
This approach is meant for providing a ``memoryview`` for a C/C++ buffer not
|
||||
managed by Python. The user is responsible for managing the lifetime of the
|
||||
buffer. Using a ``memoryview`` created in this way after deleting the buffer in
|
||||
C++ side results in undefined behavior.
|
||||
|
||||
We can also use ``memoryview::from_memory`` for a simple 1D contiguous buffer:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("get_memoryview1d", []() {
|
||||
return py::memoryview::from_memory(
|
||||
buffer, // buffer pointer
|
||||
sizeof(uint8_t) * 8 // buffer size
|
||||
);
|
||||
})
|
||||
|
||||
.. versionchanged:: 2.6
|
||||
``memoryview::from_memory`` added.
|
Reference in New Issue
Block a user