mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 01:50:27 +08:00
first commit
This commit is contained in:
13
third_party/pybind11/docs/advanced/pycpp/index.rst
vendored
Normal file
13
third_party/pybind11/docs/advanced/pycpp/index.rst
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
Python C++ interface
|
||||
####################
|
||||
|
||||
pybind11 exposes Python types and functions using thin C++ wrappers, which
|
||||
makes it possible to conveniently call Python code from C++ without resorting
|
||||
to Python's C API.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
object
|
||||
numpy
|
||||
utilities
|
455
third_party/pybind11/docs/advanced/pycpp/numpy.rst
vendored
Normal file
455
third_party/pybind11/docs/advanced/pycpp/numpy.rst
vendored
Normal file
@@ -0,0 +1,455 @@
|
||||
.. _numpy:
|
||||
|
||||
NumPy
|
||||
#####
|
||||
|
||||
Buffer protocol
|
||||
===============
|
||||
|
||||
Python supports an extremely general and convenient approach for exchanging
|
||||
data between plugin libraries. Types can expose a buffer view [#f2]_, which
|
||||
provides fast direct access to the raw internal data representation. Suppose we
|
||||
want to bind the following simplistic Matrix class:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Matrix {
|
||||
public:
|
||||
Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
|
||||
m_data = new float[rows*cols];
|
||||
}
|
||||
float *data() { return m_data; }
|
||||
size_t rows() const { return m_rows; }
|
||||
size_t cols() const { return m_cols; }
|
||||
private:
|
||||
size_t m_rows, m_cols;
|
||||
float *m_data;
|
||||
};
|
||||
|
||||
The following binding code exposes the ``Matrix`` contents as a buffer object,
|
||||
making it possible to cast Matrices into NumPy arrays. It is even possible to
|
||||
completely avoid copy operations with Python expressions like
|
||||
``np.array(matrix_instance, copy = False)``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
|
||||
.def_buffer([](Matrix &m) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
m.data(), /* Pointer to buffer */
|
||||
sizeof(float), /* Size of one scalar */
|
||||
py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
|
||||
2, /* Number of dimensions */
|
||||
{ m.rows(), m.cols() }, /* Buffer dimensions */
|
||||
{ sizeof(float) * m.cols(), /* Strides (in bytes) for each index */
|
||||
sizeof(float) }
|
||||
);
|
||||
});
|
||||
|
||||
Supporting the buffer protocol in a new type involves specifying the special
|
||||
``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the
|
||||
``def_buffer()`` method with a lambda function that creates a
|
||||
``py::buffer_info`` description record on demand describing a given matrix
|
||||
instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol
|
||||
specification.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct buffer_info {
|
||||
void *ptr;
|
||||
py::ssize_t itemsize;
|
||||
std::string format;
|
||||
py::ssize_t ndim;
|
||||
std::vector<py::ssize_t> shape;
|
||||
std::vector<py::ssize_t> strides;
|
||||
};
|
||||
|
||||
To create a C++ function that can take a Python buffer object as an argument,
|
||||
simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
|
||||
in a great variety of configurations, hence some safety checks are usually
|
||||
necessary in the function body. Below, you can see a basic example on how to
|
||||
define a custom constructor for the Eigen double precision matrix
|
||||
(``Eigen::MatrixXd``) type, which supports initialization from compatible
|
||||
buffer objects (e.g. a NumPy matrix).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* Bind MatrixXd (or some other Eigen type) to Python */
|
||||
typedef Eigen::MatrixXd Matrix;
|
||||
|
||||
typedef Matrix::Scalar Scalar;
|
||||
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
|
||||
|
||||
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
|
||||
.def(py::init([](py::buffer b) {
|
||||
typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
|
||||
|
||||
/* Request a buffer descriptor from Python */
|
||||
py::buffer_info info = b.request();
|
||||
|
||||
/* Some basic validation checks ... */
|
||||
if (info.format != py::format_descriptor<Scalar>::format())
|
||||
throw std::runtime_error("Incompatible format: expected a double array!");
|
||||
|
||||
if (info.ndim != 2)
|
||||
throw std::runtime_error("Incompatible buffer dimension!");
|
||||
|
||||
auto strides = Strides(
|
||||
info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar),
|
||||
info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar));
|
||||
|
||||
auto map = Eigen::Map<Matrix, 0, Strides>(
|
||||
static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
|
||||
|
||||
return Matrix(map);
|
||||
}));
|
||||
|
||||
For reference, the ``def_buffer()`` call for this Eigen data type should look
|
||||
as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
.def_buffer([](Matrix &m) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
m.data(), /* Pointer to buffer */
|
||||
sizeof(Scalar), /* Size of one scalar */
|
||||
py::format_descriptor<Scalar>::format(), /* Python struct-style format descriptor */
|
||||
2, /* Number of dimensions */
|
||||
{ m.rows(), m.cols() }, /* Buffer dimensions */
|
||||
{ sizeof(Scalar) * (rowMajor ? m.cols() : 1),
|
||||
sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
|
||||
/* Strides (in bytes) for each index */
|
||||
);
|
||||
})
|
||||
|
||||
For a much easier approach of binding Eigen types (although with some
|
||||
limitations), refer to the section on :doc:`/advanced/cast/eigen`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_buffers.cpp` contains a complete example
|
||||
that demonstrates using the buffer protocol with pybind11 in more detail.
|
||||
|
||||
.. [#f2] http://docs.python.org/3/c-api/buffer.html
|
||||
|
||||
Arrays
|
||||
======
|
||||
|
||||
By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
|
||||
restrict the function so that it only accepts NumPy arrays (rather than any
|
||||
type of Python object satisfying the buffer protocol).
|
||||
|
||||
In many situations, we want to define a function which only accepts a NumPy
|
||||
array of a certain data type. This is possible via the ``py::array_t<T>``
|
||||
template. For instance, the following function requires the argument to be a
|
||||
NumPy array containing double precision values.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double> array);
|
||||
|
||||
When it is invoked with a different type (e.g. an integer or a list of
|
||||
integers), the binding code will attempt to cast the input into a NumPy array
|
||||
of the requested type. This feature requires the :file:`pybind11/numpy.h`
|
||||
header to be included. Note that :file:`pybind11/numpy.h` does not depend on
|
||||
the NumPy headers, and thus can be used without declaring a build-time
|
||||
dependency on NumPy; NumPy>=1.7.0 is a runtime dependency.
|
||||
|
||||
Data in NumPy arrays is not guaranteed to packed in a dense manner;
|
||||
furthermore, entries can be separated by arbitrary column and row strides.
|
||||
Sometimes, it can be useful to require a function to only accept dense arrays
|
||||
using either the C (row-major) or Fortran (column-major) ordering. This can be
|
||||
accomplished via a second template argument with values ``py::array::c_style``
|
||||
or ``py::array::f_style``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
|
||||
|
||||
The ``py::array::forcecast`` argument is the default value of the second
|
||||
template parameter, and it ensures that non-conforming arguments are converted
|
||||
into an array satisfying the specified requirements instead of trying the next
|
||||
function overload.
|
||||
|
||||
There are several methods on arrays; the methods listed below under references
|
||||
work, as well as the following functions based on the NumPy API:
|
||||
|
||||
- ``.dtype()`` returns the type of the contained values.
|
||||
|
||||
- ``.strides()`` returns a pointer to the strides of the array (optionally pass
|
||||
an integer axis to get a number).
|
||||
|
||||
- ``.flags()`` returns the flag settings. ``.writable()`` and ``.owndata()``
|
||||
are directly available.
|
||||
|
||||
- ``.offset_at()`` returns the offset (optionally pass indices).
|
||||
|
||||
- ``.squeeze()`` returns a view with length-1 axes removed.
|
||||
|
||||
- ``.view(dtype)`` returns a view of the array with a different dtype.
|
||||
|
||||
- ``.reshape({i, j, ...})`` returns a view of the array with a different shape.
|
||||
``.resize({...})`` is also available.
|
||||
|
||||
- ``.index_at(i, j, ...)`` gets the count from the beginning to a given index.
|
||||
|
||||
|
||||
There are also several methods for getting references (described below).
|
||||
|
||||
Structured types
|
||||
================
|
||||
|
||||
In order for ``py::array_t`` to work with structured (record) types, we first
|
||||
need to register the memory layout of the type. This can be done via
|
||||
``PYBIND11_NUMPY_DTYPE`` macro, called in the plugin definition code, which
|
||||
expects the type followed by field names:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct A {
|
||||
int x;
|
||||
double y;
|
||||
};
|
||||
|
||||
struct B {
|
||||
int z;
|
||||
A a;
|
||||
};
|
||||
|
||||
// ...
|
||||
PYBIND11_MODULE(test, m) {
|
||||
// ...
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(A, x, y);
|
||||
PYBIND11_NUMPY_DTYPE(B, z, a);
|
||||
/* now both A and B can be used as template arguments to py::array_t */
|
||||
}
|
||||
|
||||
The structure should consist of fundamental arithmetic types, ``std::complex``,
|
||||
previously registered substructures, and arrays of any of the above. Both C++
|
||||
arrays and ``std::array`` are supported. While there is a static assertion to
|
||||
prevent many types of unsupported structures, it is still the user's
|
||||
responsibility to use only "plain" structures that can be safely manipulated as
|
||||
raw memory without violating invariants.
|
||||
|
||||
Vectorizing functions
|
||||
=====================
|
||||
|
||||
Suppose we want to bind a function with the following signature to Python so
|
||||
that it can process arbitrary NumPy array arguments (vectors, matrices, general
|
||||
N-D arrays) in addition to its normal arguments:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
double my_func(int x, float y, double z);
|
||||
|
||||
After including the ``pybind11/numpy.h`` header, this is extremely simple:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("vectorized_func", py::vectorize(my_func));
|
||||
|
||||
Invoking the function like below causes 4 calls to be made to ``my_func`` with
|
||||
each of the array elements. The significant advantage of this compared to
|
||||
solutions like ``numpy.vectorize()`` is that the loop over the elements runs
|
||||
entirely on the C++ side and can be crunched down into a tight, optimized loop
|
||||
by the compiler. The result is returned as a NumPy array of type
|
||||
``numpy.dtype.float64``.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> x = np.array([[1, 3], [5, 7]])
|
||||
>>> y = np.array([[2, 4], [6, 8]])
|
||||
>>> z = 3
|
||||
>>> result = vectorized_func(x, y, z)
|
||||
|
||||
The scalar argument ``z`` is transparently replicated 4 times. The input
|
||||
arrays ``x`` and ``y`` are automatically converted into the right types (they
|
||||
are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
|
||||
``numpy.dtype.float32``, respectively).
|
||||
|
||||
.. note::
|
||||
|
||||
Only arithmetic, complex, and POD types passed by value or by ``const &``
|
||||
reference are vectorized; all other arguments are passed through as-is.
|
||||
Functions taking rvalue reference arguments cannot be vectorized.
|
||||
|
||||
In cases where the computation is too complicated to be reduced to
|
||||
``vectorize``, it will be necessary to create and access the buffer contents
|
||||
manually. The following snippet contains a complete example that shows how this
|
||||
works (the code is somewhat contrived, since it could have been done more
|
||||
simply using ``vectorize``).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/numpy.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
|
||||
py::buffer_info buf1 = input1.request(), buf2 = input2.request();
|
||||
|
||||
if (buf1.ndim != 1 || buf2.ndim != 1)
|
||||
throw std::runtime_error("Number of dimensions must be one");
|
||||
|
||||
if (buf1.size != buf2.size)
|
||||
throw std::runtime_error("Input shapes must match");
|
||||
|
||||
/* No pointer is passed, so NumPy will allocate the buffer */
|
||||
auto result = py::array_t<double>(buf1.size);
|
||||
|
||||
py::buffer_info buf3 = result.request();
|
||||
|
||||
double *ptr1 = static_cast<double *>(buf1.ptr);
|
||||
double *ptr2 = static_cast<double *>(buf2.ptr);
|
||||
double *ptr3 = static_cast<double *>(buf3.ptr);
|
||||
|
||||
for (size_t idx = 0; idx < buf1.shape[0]; idx++)
|
||||
ptr3[idx] = ptr1[idx] + ptr2[idx];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(test, m) {
|
||||
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
|
||||
}
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
|
||||
example that demonstrates using :func:`vectorize` in more detail.
|
||||
|
||||
Direct access
|
||||
=============
|
||||
|
||||
For performance reasons, particularly when dealing with very large arrays, it
|
||||
is often desirable to directly access array elements without internal checking
|
||||
of dimensions and bounds on every access when indices are known to be already
|
||||
valid. To avoid such checks, the ``array`` class and ``array_t<T>`` template
|
||||
class offer an unchecked proxy object that can be used for this unchecked
|
||||
access through the ``unchecked<N>`` and ``mutable_unchecked<N>`` methods,
|
||||
where ``N`` gives the required dimensionality of the array:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("sum_3d", [](py::array_t<double> x) {
|
||||
auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable
|
||||
double sum = 0;
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
for (py::ssize_t k = 0; k < r.shape(2); k++)
|
||||
sum += r(i, j, k);
|
||||
return sum;
|
||||
});
|
||||
m.def("increment_3d", [](py::array_t<double> x) {
|
||||
auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
for (py::ssize_t k = 0; k < r.shape(2); k++)
|
||||
r(i, j, k) += 1.0;
|
||||
}, py::arg().noconvert());
|
||||
|
||||
To obtain the proxy from an ``array`` object, you must specify both the data
|
||||
type and number of dimensions as template arguments, such as ``auto r =
|
||||
myarray.mutable_unchecked<float, 2>()``.
|
||||
|
||||
If the number of dimensions is not known at compile time, you can omit the
|
||||
dimensions template parameter (i.e. calling ``arr_t.unchecked()`` or
|
||||
``arr.unchecked<T>()``. This will give you a proxy object that works in the
|
||||
same way, but results in less optimizable code and thus a small efficiency
|
||||
loss in tight loops.
|
||||
|
||||
Note that the returned proxy object directly references the array's data, and
|
||||
only reads its shape, strides, and writeable flag when constructed. You must
|
||||
take care to ensure that the referenced array is not destroyed or reshaped for
|
||||
the duration of the returned object, typically by limiting the scope of the
|
||||
returned instance.
|
||||
|
||||
The returned proxy object supports some of the same methods as ``py::array`` so
|
||||
that it can be used as a drop-in replacement for some existing, index-checked
|
||||
uses of ``py::array``:
|
||||
|
||||
- ``.ndim()`` returns the number of dimensions
|
||||
|
||||
- ``.data(1, 2, ...)`` and ``r.mutable_data(1, 2, ...)``` returns a pointer to
|
||||
the ``const T`` or ``T`` data, respectively, at the given indices. The
|
||||
latter is only available to proxies obtained via ``a.mutable_unchecked()``.
|
||||
|
||||
- ``.itemsize()`` returns the size of an item in bytes, i.e. ``sizeof(T)``.
|
||||
|
||||
- ``.ndim()`` returns the number of dimensions.
|
||||
|
||||
- ``.shape(n)`` returns the size of dimension ``n``
|
||||
|
||||
- ``.size()`` returns the total number of elements (i.e. the product of the shapes).
|
||||
|
||||
- ``.nbytes()`` returns the number of bytes used by the referenced elements
|
||||
(i.e. ``itemsize()`` times ``size()``).
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_numpy_array.cpp` contains additional examples
|
||||
demonstrating the use of this feature.
|
||||
|
||||
Ellipsis
|
||||
========
|
||||
|
||||
Python provides a convenient ``...`` ellipsis notation that is often used to
|
||||
slice multidimensional arrays. For instance, the following snippet extracts the
|
||||
middle dimensions of a tensor with the first and last index set to zero.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = ... # a NumPy array
|
||||
b = a[0, ..., 0]
|
||||
|
||||
The function ``py::ellipsis()`` function can be used to perform the same
|
||||
operation on the C++ side:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::array a = /* A NumPy array */;
|
||||
py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];
|
||||
|
||||
|
||||
Memory view
|
||||
===========
|
||||
|
||||
For a case when we simply want to provide a direct accessor to C/C++ buffer
|
||||
without a concrete class object, we can return a ``memoryview`` object. Suppose
|
||||
we wish to expose a ``memoryview`` for 2x4 uint8_t array, we can do the
|
||||
following:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
const uint8_t buffer[] = {
|
||||
0, 1, 2, 3,
|
||||
4, 5, 6, 7
|
||||
};
|
||||
m.def("get_memoryview2d", []() {
|
||||
return py::memoryview::from_buffer(
|
||||
buffer, // buffer pointer
|
||||
{ 2, 4 }, // shape (rows, cols)
|
||||
{ sizeof(uint8_t) * 4, sizeof(uint8_t) } // strides in bytes
|
||||
);
|
||||
})
|
||||
|
||||
This approach is meant for providing a ``memoryview`` for a C/C++ buffer not
|
||||
managed by Python. The user is responsible for managing the lifetime of the
|
||||
buffer. Using a ``memoryview`` created in this way after deleting the buffer in
|
||||
C++ side results in undefined behavior.
|
||||
|
||||
We can also use ``memoryview::from_memory`` for a simple 1D contiguous buffer:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("get_memoryview1d", []() {
|
||||
return py::memoryview::from_memory(
|
||||
buffer, // buffer pointer
|
||||
sizeof(uint8_t) * 8 // buffer size
|
||||
);
|
||||
})
|
||||
|
||||
.. versionchanged:: 2.6
|
||||
``memoryview::from_memory`` added.
|
286
third_party/pybind11/docs/advanced/pycpp/object.rst
vendored
Normal file
286
third_party/pybind11/docs/advanced/pycpp/object.rst
vendored
Normal file
@@ -0,0 +1,286 @@
|
||||
Python types
|
||||
############
|
||||
|
||||
.. _wrappers:
|
||||
|
||||
Available wrappers
|
||||
==================
|
||||
|
||||
All major Python types are available as thin C++ wrapper classes. These
|
||||
can also be used as function parameters -- see :ref:`python_objects_as_args`.
|
||||
|
||||
Available types include :class:`handle`, :class:`object`, :class:`bool_`,
|
||||
:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
|
||||
:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
|
||||
:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
|
||||
:class:`array`, and :class:`array_t`.
|
||||
|
||||
.. warning::
|
||||
|
||||
Be sure to review the :ref:`pytypes_gotchas` before using this heavily in
|
||||
your C++ API.
|
||||
|
||||
.. _instantiating_compound_types:
|
||||
|
||||
Instantiating compound Python types from C++
|
||||
============================================
|
||||
|
||||
Dictionaries can be initialized in the :class:`dict` constructor:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
using namespace pybind11::literals; // to bring in the `_a` literal
|
||||
py::dict d("spam"_a=py::none(), "eggs"_a=42);
|
||||
|
||||
A tuple of python objects can be instantiated using :func:`py::make_tuple`:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::tuple tup = py::make_tuple(42, py::none(), "spam");
|
||||
|
||||
Each element is converted to a supported Python type.
|
||||
|
||||
A `simple namespace`_ can be instantiated using
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
using namespace pybind11::literals; // to bring in the `_a` literal
|
||||
py::object SimpleNamespace = py::module_::import("types").attr("SimpleNamespace");
|
||||
py::object ns = SimpleNamespace("spam"_a=py::none(), "eggs"_a=42);
|
||||
|
||||
Attributes on a namespace can be modified with the :func:`py::delattr`,
|
||||
:func:`py::getattr`, and :func:`py::setattr` functions. Simple namespaces can
|
||||
be useful as lightweight stand-ins for class instances.
|
||||
|
||||
.. _simple namespace: https://docs.python.org/3/library/types.html#types.SimpleNamespace
|
||||
|
||||
.. _casting_back_and_forth:
|
||||
|
||||
Casting back and forth
|
||||
======================
|
||||
|
||||
In this kind of mixed code, it is often necessary to convert arbitrary C++
|
||||
types to Python, which can be done using :func:`py::cast`:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
MyClass *cls = ...;
|
||||
py::object obj = py::cast(cls);
|
||||
|
||||
The reverse direction uses the following syntax:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::object obj = ...;
|
||||
MyClass *cls = obj.cast<MyClass *>();
|
||||
|
||||
When conversion fails, both directions throw the exception :class:`cast_error`.
|
||||
|
||||
.. _python_libs:
|
||||
|
||||
Accessing Python libraries from C++
|
||||
===================================
|
||||
|
||||
It is also possible to import objects defined in the Python standard
|
||||
library or available in the current Python environment (``sys.path``) and work
|
||||
with these in C++.
|
||||
|
||||
This example obtains a reference to the Python ``Decimal`` class.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Equivalent to "from decimal import Decimal"
|
||||
py::object Decimal = py::module_::import("decimal").attr("Decimal");
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Try to import scipy
|
||||
py::object scipy = py::module_::import("scipy");
|
||||
return scipy.attr("__version__");
|
||||
|
||||
|
||||
.. _calling_python_functions:
|
||||
|
||||
Calling Python functions
|
||||
========================
|
||||
|
||||
It is also possible to call Python classes, functions and methods
|
||||
via ``operator()``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Construct a Python object of class Decimal
|
||||
py::object pi = Decimal("3.14159");
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Use Python to make our directories
|
||||
py::object os = py::module_::import("os");
|
||||
py::object makedirs = os.attr("makedirs");
|
||||
makedirs("/tmp/path/to/somewhere");
|
||||
|
||||
One can convert the result obtained from Python to a pure C++ version
|
||||
if a ``py::class_`` or type conversion is defined.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::function f = <...>;
|
||||
py::object result_py = f(1234, "hello", some_instance);
|
||||
MyClass &result = result_py.cast<MyClass>();
|
||||
|
||||
.. _calling_python_methods:
|
||||
|
||||
Calling Python methods
|
||||
========================
|
||||
|
||||
To call an object's method, one can again use ``.attr`` to obtain access to the
|
||||
Python method.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Calculate e^π in decimal
|
||||
py::object exp_pi = pi.attr("exp")();
|
||||
py::print(py::str(exp_pi));
|
||||
|
||||
In the example above ``pi.attr("exp")`` is a *bound method*: it will always call
|
||||
the method for that same instance of the class. Alternately one can create an
|
||||
*unbound method* via the Python class (instead of instance) and pass the ``self``
|
||||
object explicitly, followed by other arguments.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::object decimal_exp = Decimal.attr("exp");
|
||||
|
||||
// Compute the e^n for n=0..4
|
||||
for (int n = 0; n < 5; n++) {
|
||||
py::print(decimal_exp(Decimal(n));
|
||||
}
|
||||
|
||||
Keyword arguments
|
||||
=================
|
||||
|
||||
Keyword arguments are also supported. In Python, there is the usual call syntax:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def f(number, say, to):
|
||||
... # function code
|
||||
|
||||
|
||||
f(1234, say="hello", to=some_instance) # keyword call in Python
|
||||
|
||||
In C++, the same call can be made using:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
using namespace pybind11::literals; // to bring in the `_a` literal
|
||||
f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
|
||||
|
||||
Unpacking arguments
|
||||
===================
|
||||
|
||||
Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
|
||||
other arguments:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// * unpacking
|
||||
py::tuple args = py::make_tuple(1234, "hello", some_instance);
|
||||
f(*args);
|
||||
|
||||
// ** unpacking
|
||||
py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
|
||||
f(**kwargs);
|
||||
|
||||
// mixed keywords, * and ** unpacking
|
||||
py::tuple args = py::make_tuple(1234);
|
||||
py::dict kwargs = py::dict("to"_a=some_instance);
|
||||
f(*args, "say"_a="hello", **kwargs);
|
||||
|
||||
Generalized unpacking according to PEP448_ is also supported:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::dict kwargs1 = py::dict("number"_a=1234);
|
||||
py::dict kwargs2 = py::dict("to"_a=some_instance);
|
||||
f(**kwargs1, "say"_a="hello", **kwargs2);
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_pytypes.cpp` contains a complete
|
||||
example that demonstrates passing native Python types in more detail. The
|
||||
file :file:`tests/test_callbacks.cpp` presents a few examples of calling
|
||||
Python functions from C++, including keywords arguments and unpacking.
|
||||
|
||||
.. _PEP448: https://www.python.org/dev/peps/pep-0448/
|
||||
|
||||
.. _implicit_casting:
|
||||
|
||||
Implicit casting
|
||||
================
|
||||
|
||||
When using the C++ interface for Python types, or calling Python functions,
|
||||
objects of type :class:`object` are returned. It is possible to invoke implicit
|
||||
conversions to subclasses like :class:`dict`. The same holds for the proxy objects
|
||||
returned by ``operator[]`` or ``obj.attr()``.
|
||||
Casting to subtypes improves code readability and allows values to be passed to
|
||||
C++ functions that require a specific subtype rather than a generic :class:`object`.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/numpy.h>
|
||||
using namespace pybind11::literals;
|
||||
|
||||
py::module_ os = py::module_::import("os");
|
||||
py::module_ path = py::module_::import("os.path"); // like 'import os.path as path'
|
||||
py::module_ np = py::module_::import("numpy"); // like 'import numpy as np'
|
||||
|
||||
py::str curdir_abs = path.attr("abspath")(path.attr("curdir"));
|
||||
py::print(py::str("Current directory: ") + curdir_abs);
|
||||
py::dict environ = os.attr("environ");
|
||||
py::print(environ["HOME"]);
|
||||
py::array_t<float> arr = np.attr("ones")(3, "dtype"_a="float32");
|
||||
py::print(py::repr(arr + py::int_(1)));
|
||||
|
||||
These implicit conversions are available for subclasses of :class:`object`; there
|
||||
is no need to call ``obj.cast()`` explicitly as for custom classes, see
|
||||
:ref:`casting_back_and_forth`.
|
||||
|
||||
.. note::
|
||||
If a trivial conversion via move constructor is not possible, both implicit and
|
||||
explicit casting (calling ``obj.cast()``) will attempt a "rich" conversion.
|
||||
For instance, ``py::list env = os.attr("environ");`` will succeed and is
|
||||
equivalent to the Python code ``env = list(os.environ)`` that produces a
|
||||
list of the dict keys.
|
||||
|
||||
.. TODO: Adapt text once PR #2349 has landed
|
||||
|
||||
Handling exceptions
|
||||
===================
|
||||
|
||||
Python exceptions from wrapper classes will be thrown as a ``py::error_already_set``.
|
||||
See :ref:`Handling exceptions from Python in C++
|
||||
<handling_python_exceptions_cpp>` for more information on handling exceptions
|
||||
raised when calling C++ wrapper classes.
|
||||
|
||||
.. _pytypes_gotchas:
|
||||
|
||||
Gotchas
|
||||
=======
|
||||
|
||||
Default-Constructed Wrappers
|
||||
----------------------------
|
||||
|
||||
When a wrapper type is default-constructed, it is **not** a valid Python object (i.e. it is not ``py::none()``). It is simply the same as
|
||||
``PyObject*`` null pointer. To check for this, use
|
||||
``static_cast<bool>(my_wrapper)``.
|
||||
|
||||
Assigning py::none() to wrappers
|
||||
--------------------------------
|
||||
|
||||
You may be tempted to use types like ``py::str`` and ``py::dict`` in C++
|
||||
signatures (either pure C++, or in bound signatures), and assign them default
|
||||
values of ``py::none()``. However, in a best case scenario, it will fail fast
|
||||
because ``None`` is not convertible to that type (e.g. ``py::dict``), or in a
|
||||
worse case scenario, it will silently work but corrupt the types you want to
|
||||
work with (e.g. ``py::str(py::none())`` will yield ``"None"`` in Python).
|
155
third_party/pybind11/docs/advanced/pycpp/utilities.rst
vendored
Normal file
155
third_party/pybind11/docs/advanced/pycpp/utilities.rst
vendored
Normal file
@@ -0,0 +1,155 @@
|
||||
Utilities
|
||||
#########
|
||||
|
||||
Using Python's print function in C++
|
||||
====================================
|
||||
|
||||
The usual way to write output in C++ is using ``std::cout`` while in Python one
|
||||
would use ``print``. Since these methods use different buffers, mixing them can
|
||||
lead to output order issues. To resolve this, pybind11 modules can use the
|
||||
:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
|
||||
|
||||
Python's ``print`` function is replicated in the C++ API including optional
|
||||
keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
|
||||
expected in Python:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::print(1, 2.0, "three"); // 1 2.0 three
|
||||
py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
|
||||
|
||||
auto args = py::make_tuple("unpacked", true);
|
||||
py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
|
||||
|
||||
.. _ostream_redirect:
|
||||
|
||||
Capturing standard output from ostream
|
||||
======================================
|
||||
|
||||
Often, a library will use the streams ``std::cout`` and ``std::cerr`` to print,
|
||||
but this does not play well with Python's standard ``sys.stdout`` and ``sys.stderr``
|
||||
redirection. Replacing a library's printing with ``py::print <print>`` may not
|
||||
be feasible. This can be fixed using a guard around the library function that
|
||||
redirects output to the corresponding Python streams:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/iostream.h>
|
||||
|
||||
...
|
||||
|
||||
// Add a scoped redirect for your noisy code
|
||||
m.def("noisy_func", []() {
|
||||
py::scoped_ostream_redirect stream(
|
||||
std::cout, // std::ostream&
|
||||
py::module_::import("sys").attr("stdout") // Python output
|
||||
);
|
||||
call_noisy_func();
|
||||
});
|
||||
|
||||
.. warning::
|
||||
|
||||
The implementation in ``pybind11/iostream.h`` is NOT thread safe. Multiple
|
||||
threads writing to a redirected ostream concurrently cause data races
|
||||
and potentially buffer overflows. Therefore it is currently a requirement
|
||||
that all (possibly) concurrent redirected ostream writes are protected by
|
||||
a mutex. #HelpAppreciated: Work on iostream.h thread safety. For more
|
||||
background see the discussions under
|
||||
`PR #2982 <https://github.com/pybind/pybind11/pull/2982>`_ and
|
||||
`PR #2995 <https://github.com/pybind/pybind11/pull/2995>`_.
|
||||
|
||||
This method respects flushes on the output streams and will flush if needed
|
||||
when the scoped guard is destroyed. This allows the output to be redirected in
|
||||
real time, such as to a Jupyter notebook. The two arguments, the C++ stream and
|
||||
the Python output, are optional, and default to standard output if not given. An
|
||||
extra type, ``py::scoped_estream_redirect <scoped_estream_redirect>``, is identical
|
||||
except for defaulting to ``std::cerr`` and ``sys.stderr``; this can be useful with
|
||||
``py::call_guard``, which allows multiple items, but uses the default constructor:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Alternative: Call single function using call guard
|
||||
m.def("noisy_func", &call_noisy_function,
|
||||
py::call_guard<py::scoped_ostream_redirect,
|
||||
py::scoped_estream_redirect>());
|
||||
|
||||
The redirection can also be done in Python with the addition of a context
|
||||
manager, using the ``py::add_ostream_redirect() <add_ostream_redirect>`` function:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::add_ostream_redirect(m, "ostream_redirect");
|
||||
|
||||
The name in Python defaults to ``ostream_redirect`` if no name is passed. This
|
||||
creates the following context manager in Python:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
with ostream_redirect(stdout=True, stderr=True):
|
||||
noisy_function()
|
||||
|
||||
It defaults to redirecting both streams, though you can use the keyword
|
||||
arguments to disable one of the streams if needed.
|
||||
|
||||
.. note::
|
||||
|
||||
The above methods will not redirect C-level output to file descriptors, such
|
||||
as ``fprintf``. For those cases, you'll need to redirect the file
|
||||
descriptors either directly in C or with Python's ``os.dup2`` function
|
||||
in an operating-system dependent way.
|
||||
|
||||
.. _eval:
|
||||
|
||||
Evaluating Python expressions from strings and files
|
||||
====================================================
|
||||
|
||||
pybind11 provides the ``eval``, ``exec`` and ``eval_file`` functions to evaluate
|
||||
Python expressions and statements. The following example illustrates how they
|
||||
can be used.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// At beginning of file
|
||||
#include <pybind11/eval.h>
|
||||
|
||||
...
|
||||
|
||||
// Evaluate in scope of main module
|
||||
py::object scope = py::module_::import("__main__").attr("__dict__");
|
||||
|
||||
// Evaluate an isolated expression
|
||||
int result = py::eval("my_variable + 10", scope).cast<int>();
|
||||
|
||||
// Evaluate a sequence of statements
|
||||
py::exec(
|
||||
"print('Hello')\n"
|
||||
"print('world!');",
|
||||
scope);
|
||||
|
||||
// Evaluate the statements in an separate Python file on disk
|
||||
py::eval_file("script.py", scope);
|
||||
|
||||
C++11 raw string literals are also supported and quite handy for this purpose.
|
||||
The only requirement is that the first statement must be on a new line following
|
||||
the raw string delimiter ``R"(``, ensuring all lines have common leading indent:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::exec(R"(
|
||||
x = get_answer()
|
||||
if x == 42:
|
||||
print('Hello World!')
|
||||
else:
|
||||
print('Bye!')
|
||||
)", scope
|
||||
);
|
||||
|
||||
.. note::
|
||||
|
||||
`eval` and `eval_file` accept a template parameter that describes how the
|
||||
string/file should be interpreted. Possible choices include ``eval_expr``
|
||||
(isolated expression), ``eval_single_statement`` (a single statement, return
|
||||
value is always ``none``), and ``eval_statements`` (sequence of statements,
|
||||
return value is always ``none``). `eval` defaults to ``eval_expr``,
|
||||
`eval_file` defaults to ``eval_statements`` and `exec` is just a shortcut
|
||||
for ``eval<eval_statements>``.
|
Reference in New Issue
Block a user