[LLM] Update Multinode Deployment (#2830)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled

* [LLM] fix multinode bugs

* [LLM] update multinode deployment

* [LLM] update multinode deployment

* [LLM] update multinode deployment

* [LLM] update multinode deployment

* [LLM] update multinode deployment

* [LLM] fix ci bugs

* Update fastdeploy/engine/args_utils.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* [LLM] update random port

* [LLM] update random port

* [LLM] fix ci bugs

* fix ci bugs

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
This commit is contained in:
ltd0924
2025-07-16 23:42:54 +08:00
committed by GitHub
parent d245d1ca6c
commit 9c25dcca0b
11 changed files with 108 additions and 56 deletions

View File

@@ -124,9 +124,19 @@ class EngineArgs:
Ratio of tokens to process in a block.
"""
pod_ips: Optional[List[str]] = None
dist_init_ip: Optional[str] = None
"""
List of IP addresses for nodes in the cluster.
The master node ip of multinode deployment
"""
nnodes: int = 1
"""
The number of nodes in multinode deployment
"""
node_rank: int = 0
"""
The rank of the current node in multinode deployment
"""
swap_space: float = None
@@ -485,11 +495,25 @@ class EngineArgs:
# Cluster system parameters group
system_group = parser.add_argument_group("System Configuration")
system_group.add_argument(
"--pod-ips",
type=lambda s: s.split(",") if s else None,
default=EngineArgs.pod_ips,
"--dist-init-ip",
default=EngineArgs.dist_init_ip,
help=
"List of IP addresses for nodes in the cluster (comma-separated).")
"IP addresses of master node.")
system_group.add_argument(
"--nnodes",
type=int,
default=EngineArgs.nnodes,
help=
"The number of all nodes.")
system_group.add_argument(
"--node-rank",
type=int,
default=EngineArgs.node_rank,
help=
"node rank id (range [0, nnodes)).")
# Performance tuning parameters group
@@ -789,7 +813,9 @@ class EngineArgs:
max_num_seqs=self.max_num_seqs,
speculative_config=speculative_cfg,
max_num_batched_tokens=self.max_num_batched_tokens,
pod_ips=self.pod_ips,
dist_init_ip=self.dist_init_ip,
nnodes=self.nnodes,
node_rank=self.node_rank,
use_warmup=self.use_warmup,
engine_worker_queue_port=self.engine_worker_queue_port,
limit_mm_per_prompt=self.limit_mm_per_prompt,

View File

@@ -6,7 +6,7 @@
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#dist_init_ip
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@@ -24,7 +24,7 @@ from fastdeploy import envs
from fastdeploy.platforms import current_platform
from fastdeploy.scheduler import SchedulerConfig
from fastdeploy.utils import (ceil_div, check_unified_ckpt, get_host_ip,
is_port_available, llm_logger)
is_port_available, get_random_port, llm_logger)
TaskOption = Literal["generate"]
@@ -642,7 +642,9 @@ class Config:
max_model_len: int = 8192,
max_num_seqs: int = 8,
max_num_batched_tokens: Optional[int] = None,
pod_ips: Optional[List[str]] = None,
dist_init_ip: str = None,
nnodes: int = 1,
node_rank: int = 0,
speculative_config: Optional[Dict[str, Any]] = None,
graph_optimization_config: Optional[Dict[str, Any]] = None,
use_warmup: bool = False,
@@ -675,7 +677,6 @@ class Config:
max_model_len (int): Maximum model length. Default is 8192.
max_num_seqs (int): Maximum number of sequences. Default is 8.
max_num_batched_tokens (Optional[int]): Maximum number of batched tokens. Default is None.
pod_ips (Optional[List[str]]): List of POD IPs. Default is None.
mm_processor_kwargs (Optional[Dict[str, Any]]): Additional arguments for multi-modal processor. Default is None.
speculative_config (Optional[Dict[str, Any]]): Speculative execution configuration. Default is None.
graph_optimization_config (Optional[Dict[str, Any]]): Graph optimizaion backend execution configuration. Default is None.
@@ -699,7 +700,16 @@ class Config:
self.tokenizer = tokenizer
self.max_num_batched_tokens = max_num_batched_tokens
self.tensor_parallel_size = tensor_parallel_size
self.pod_ips = pod_ips
self.dist_init_ip = dist_init_ip
self.nnode = nnodes
self.node_rank = node_rank
if self.dist_init_ip is None:
self.master_ip = "0.0.0.0"
else:
self.master_ip = self.dist_init_ip
self.dist_init_addr = f"{self.dist_init_ip}:{get_random_port()}"
self.max_model_len = max_model_len
self.max_num_seqs = max_num_seqs
self.limit_mm_per_prompt = limit_mm_per_prompt
@@ -716,14 +726,8 @@ class Config:
self.graph_optimization_config = graph_optimization_config
self.guided_decoding_backend = guided_decoding_backend
self.disable_any_whitespace = disable_any_whitespace
self.is_master = True
self._str_to_list("innode_prefill_ports", int)
self._str_to_list("pod_ips", str)
if self.pod_ips is None:
self.nnode = 1
else:
self.nnode = len(self.pod_ips)
assert self.splitwise_role in ["mixed", "prefill", "decode"]
@@ -778,9 +782,9 @@ class Config:
self.host_ip = get_host_ip()
if self.pod_ips is None:
self.pod_ips = ["0.0.0.0"]
elif self.host_ip != self.pod_ips[0]:
if self.dist_init_ip is None or self.host_ip == self.master_ip:
self.is_master = True
else:
self.is_master = False
import paddle

View File

@@ -174,7 +174,7 @@ class LLMEngine(object):
cache_config=self.cfg.cache_config,
tensor_parallel_size=self.cfg.tensor_parallel_size,
device_ids=device_ids,
pod_ip=self.cfg.pod_ips[0],
pod_ip=self.cfg.master_ip,
engine_worker_queue_port=self.cfg.engine_worker_queue_port,
pid_suffix=self.ipc_signal_suffix)
@@ -239,11 +239,12 @@ class LLMEngine(object):
if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1:
self.dp_processed = []
for i in range(1, self.cfg.parallel_config.data_parallel_size):
for i in range(1, self.cfg.parallel_config.data_parallel_size // self.cfg.nnode):
time.sleep(1)
self.dp_processed.append(
multiprocessing.Process(target=start_expert_service,
args=(self.cfg, i,
args=(self.cfg,
i + self.cfg.node_rank * self.cfg.worker_num_per_node,
self.ipc_signal_suffix)))
llm_logger.info(f"Engine is initialized successfully with {self.cfg.tensor_parallel_size}" \
+ " data parallel id {}".format(i))
@@ -1007,8 +1008,6 @@ class LLMEngine(object):
)
arguments = (
f" --nnodes {str(self.cfg.nnode)}"
f" --ips {','.join(self.cfg.pod_ips)}"
f" --devices {self.cfg.device_ids} {py_script}"
f" --max_num_seqs {self.cfg.max_num_seqs} --max_model_len {self.cfg.max_model_len}"
f" --gpu_memory_utilization {self.cfg.cache_config.gpu_memory_utilization}"
@@ -1016,7 +1015,7 @@ class LLMEngine(object):
f" --device_ids {self.cfg.device_ids}"
f" --tensor_parallel_size {self.cfg.tensor_parallel_size}"
f" --engine_worker_queue_port {str(self.cfg.engine_worker_queue_port)}"
f" --pod_ip {self.cfg.pod_ips[0]}"
f" --pod_ip {self.cfg.master_ip}"
f" --total_block_num {self.cfg.cache_config.total_block_num}"
f" --block_size {self.cfg.cache_config.block_size}"
f" --enc_dec_block_num {self.cfg.cache_config.enc_dec_block_num}"
@@ -1057,7 +1056,11 @@ class LLMEngine(object):
if value:
arguments = arguments + f" --{worker_flag}"
if self.cfg.nnode > 1:
pd_cmd = pd_cmd + f" --ips {self.cfg.ips}"
pd_cmd = pd_cmd + (
f" --master {self.cfg.dist_init_addr}"
f" --nnodes {str(self.cfg.nnode)}"
f" --rank {str(self.cfg.node_rank)}"
)
pd_cmd = pd_cmd + arguments + f" 2>{log_dir}/launch_worker.log"
llm_logger.info("Launch worker service command: {}".format(pd_cmd))
p = subprocess.Popen(
@@ -1158,7 +1161,7 @@ class LLMEngine(object):
cache_config=self.cfg.cache_config,
tensor_parallel_size=self.cfg.tensor_parallel_size,
device_ids=device_ids,
pod_ip=self.cfg.pod_ips[0],
pod_ip=self.cfg.master_ip,
engine_worker_queue_port=self.cfg.engine_worker_queue_port,
pid_suffix=self.ipc_signal_suffix)
def check_health(self, time_interval_threashold=30):
@@ -1245,8 +1248,9 @@ class LLMEngine(object):
"""
start queue service for engine worker communication
"""
address = (self.cfg.pod_ips[0], self.cfg.engine_worker_queue_port)
if self.cfg.host_ip == self.cfg.pod_ips[0] or self.cfg.pod_ips[0] == "0.0.0.0":
address = (self.cfg.master_ip, self.cfg.engine_worker_queue_port)
if self.cfg.host_ip == self.cfg.master_ip or self.cfg.master_ip == "0.0.0.0":
llm_logger.info(f"Starting engine worker queue server service at {address}")
self.engine_worker_queue_server = EngineWorkerQueue(
address=address,
is_server=True,
@@ -1256,7 +1260,7 @@ class LLMEngine(object):
if self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != 'mixed':
self.cache_task_queue = EngineCacheQueue(
address=(self.cfg.pod_ips[0], self.cfg.cache_config.cache_queue_port),
address=(self.cfg.master_ip, self.cfg.cache_config.cache_queue_port),
authkey=b'cache_queue_service',
is_server=True,
num_client=self.cfg.tensor_parallel_size,
@@ -1270,4 +1274,6 @@ class LLMEngine(object):
is_server=False,
num_client=self.cfg.tensor_parallel_size,
client_id=0,
local_data_parallel_id=0)
local_data_parallel_size=self.cfg.parallel_config.data_parallel_size,
local_data_parallel_id= min(self.cfg.worker_num_per_node * self.cfg.node_rank,
self.cfg.parallel_config.data_parallel_size - 1))

View File

@@ -49,8 +49,8 @@ class ExpertService(object):
cfg (Config): Config object containing all the configuration parameters.
"""
self.cfg = cfg
start_pos = local_data_parallel_id * self.cfg.tensor_parallel_size
end_pos = (local_data_parallel_id + 1) * self.cfg.tensor_parallel_size
start_pos = (local_data_parallel_id * self.cfg.tensor_parallel_size) % self.cfg.worker_num_per_node
end_pos = ((local_data_parallel_id + 1) * self.cfg.tensor_parallel_size) % self.cfg.worker_num_per_node
self.cfg.cache_config.rdma_comm_ports = self.cfg.cache_config.rdma_comm_ports[
start_pos:end_pos]
self.cfg.local_device_ids = self.cfg.device_ids.split(
@@ -65,7 +65,7 @@ class ExpertService(object):
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
address = (cfg.pod_ips[0], cfg.engine_worker_queue_port)
address = (cfg.master_ip, cfg.engine_worker_queue_port)
self.engine_worker_queue = EngineWorkerQueue(
address=address,
is_server=False,
@@ -118,7 +118,7 @@ class ExpertService(object):
cache_config=self.cfg.cache_config,
tensor_parallel_size=self.cfg.tensor_parallel_size,
device_ids=self.cfg.local_device_ids,
pod_ip=self.cfg.pod_ips[0],
pod_ip=self.cfg.master_ip,
engine_worker_queue_port=self.cfg.engine_worker_queue_port,
pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}"
)

View File

@@ -85,7 +85,7 @@ class LLM:
self.mutex = threading.Lock()
self.req_output = dict()
self.master_node_ip = self.llm_engine.cfg.pod_ips[0]
self.master_node_ip = self.llm_engine.cfg.master_ip
self._receive_output_thread = threading.Thread(
target=self._receive_output, daemon=True)
self._receive_output_thread.start()

View File

@@ -122,8 +122,8 @@ async def lifespan(app: FastAPI):
args.mm_processor_kwargs, args.enable_mm,
args.reasoning_parser)
app.state.dynamic_load_weight = args.dynamic_load_weight
chat_handler = OpenAIServingChat(engine_client, pid, args.pod_ips)
completion_handler = OpenAIServingCompletion(engine_client, pid, args.pod_ips)
chat_handler = OpenAIServingChat(engine_client, pid, args.dist_init_ip)
completion_handler = OpenAIServingCompletion(engine_client, pid, args.dist_init_ip)
engine_client.create_zmq_client(model=pid, mode=zmq.PUSH)
engine_client.pid = pid
app.state.engine_client = engine_client

View File

@@ -40,16 +40,16 @@ class OpenAIServingChat:
OpenAI-style chat completions serving
"""
def __init__(self, engine_client, pid, pod_ips):
def __init__(self, engine_client, pid, dist_init_ip):
self.engine_client = engine_client
self.pid = pid
self.pod_ips = pod_ips
self.master_ip = dist_init_ip
self.host_ip = get_host_ip()
def _check_master(self):
if self.pod_ips is None:
if self.master_ip is None:
return True
if self.host_ip == self.pod_ips[0]:
if self.host_ip == self.master_ip:
return True
return False

View File

@@ -45,16 +45,16 @@ from fastdeploy.engine.request import RequestOutput
class OpenAIServingCompletion:
def __init__(self, engine_client, pid, pod_ips):
def __init__(self, engine_client, pid, dist_init_ip):
self.engine_client = engine_client
self.pid = pid
self.pod_ips = pod_ips
self.master_ip = dist_init_ip
self.host_ip = get_host_ip()
def _check_master(self):
if self.pod_ips is None:
if self.master_ip is None:
return True
if self.host_ip == self.pod_ips[0]:
if self.host_ip == self.master_ip:
return True
return False

View File

@@ -27,7 +27,8 @@ from datetime import datetime
from logging.handlers import BaseRotatingHandler
from pathlib import Path
from typing import Literal, TypeVar, Union
import random
import socket
import requests
import yaml
from aistudio_sdk.snapshot_download import snapshot_download
@@ -421,6 +422,19 @@ def get_host_ip():
return ip
def get_random_port():
while True:
port = random.randint(49152, 65535)
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
s.bind(("0.0.0.0", port))
return port
except OSError:
continue
def is_port_available(host, port):
"""
Check the port is available

View File

@@ -23,6 +23,7 @@ import pynvml
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.platforms import current_platform
from fastdeploy.utils import get_logger
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
from fastdeploy.worker.output import ModelRunnerOutput
@@ -50,11 +51,12 @@ class GpuWorker(WorkerBase):
"""
Initialize device and construct model runner
"""
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
if self.device_config.device_type == "cuda" and paddle.device.is_compiled_with_cuda(
):
# Set evironment variable
self.device_ids = self.parallel_config.device_ids.split(",")
self.device = f"gpu:{self.local_rank}"
self.device = f"gpu:{self.local_rank % self.max_chips_per_node}"
paddle.device.set_device(self.device)
paddle.set_default_dtype(self.parallel_config.dtype)
@@ -72,7 +74,7 @@ class GpuWorker(WorkerBase):
self.model_runner: GPUModelRunner = GPUModelRunner(
fd_config=self.fd_config,
device=self.device,
device_id=self.device_ids[self.local_rank],
device_id=self.device_ids[self.local_rank % self.max_chips_per_node],
rank=self.rank,
local_rank=self.local_rank)

View File

@@ -136,9 +136,9 @@ class PaddleDisWorkerProc():
model_weights_status:
"""
# init worker_ready_signal
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
array_size = min(
max_chips_per_node, self.parallel_config.tensor_parallel_size *
self.max_chips_per_node, self.parallel_config.tensor_parallel_size *
self.parallel_config.expert_parallel_size)
workers_ready = np.zeros(shape=[array_size], dtype=np.int32)
self.worker_ready_signal = IPCSignal(
@@ -148,10 +148,10 @@ class PaddleDisWorkerProc():
suffix=self.parallel_config.engine_pid,
create=False)
self.worker_ready_signal.value[self.local_rank %
max_chips_per_node] = 1
self.max_chips_per_node] = 1
# init worker_healthy_live_signal
workers_alive = np.zeros(shape=[self.ranks], dtype=np.int32)
workers_alive = np.zeros(shape=[array_size], dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal(
name="worker_healthy_live_signal",
array=workers_alive,
@@ -205,7 +205,7 @@ class PaddleDisWorkerProc():
Tmp loop function for ep utill DP is supported
"""
while True:
self.worker_healthy_live_signal.value[self.local_rank] = int(
self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(
time.time())
if self.fd_config.parallel_config.tensor_parallel_rank == 0 and self.task_queue.num_tasks(