mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-03 11:02:01 +08:00
add tile
This commit is contained in:
105
fastdeploy/function/tile.cc
Normal file
105
fastdeploy/function/tile.cc
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/function/tile.h"
|
||||
#include "fastdeploy/function/eigen.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace function {
|
||||
|
||||
template <typename T, int Rank>
|
||||
void TileFunctor(const FDTensor& x, std::vector<int64_t> repeat_times,
|
||||
FDTensor* out) {
|
||||
auto x_shape = x.Shape();
|
||||
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
||||
FDASSERT(repeat_times[i] > 0,
|
||||
"All elements of the input 'repeat_times' "
|
||||
"for tile op must be positive integers, but "
|
||||
"the value received is %d.",
|
||||
repeat_times[i]);
|
||||
}
|
||||
if (repeat_times.size() < x_shape.size()) {
|
||||
int diff = x_shape.size() - repeat_times.size();
|
||||
repeat_times.insert(repeat_times.begin(), diff, 1);
|
||||
} else {
|
||||
int diff = repeat_times.size() - x_shape.size();
|
||||
x_shape.insert(x_shape.begin(), diff, 1);
|
||||
}
|
||||
FDASSERT(repeat_times.size() == x_shape.size(),
|
||||
"The rank (%d) of the input 'x' and the rank (%d) of the input "
|
||||
"'repeat_times' for tile op must match after promotion.",
|
||||
x_shape.size(), repeat_times.size());
|
||||
|
||||
if (Rank == 0) {
|
||||
// Deep copy
|
||||
*out = x;
|
||||
return;
|
||||
}
|
||||
|
||||
Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
|
||||
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
||||
bcast_dims[i] = repeat_times[i];
|
||||
}
|
||||
|
||||
std::vector<int64_t> out_shape(x_shape);
|
||||
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
||||
out_shape[i] *= repeat_times[i];
|
||||
}
|
||||
|
||||
out->Allocate(out_shape, x.Dtype());
|
||||
auto eigen_x = EigenTensor<T, Rank>::From(x, x_shape);
|
||||
auto eigen_out = EigenTensor<T, Rank>::From(*out, out_shape);
|
||||
|
||||
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
|
||||
eigen_out.device(dev) = eigen_x.broadcast(bcast_dims);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void TileKernel(const FDTensor& x, std::vector<int64_t> repeat_times,
|
||||
FDTensor* out) {
|
||||
auto rank = x.Shape().size();
|
||||
auto repeat_times_size = repeat_times.size();
|
||||
rank = (std::max)(rank, repeat_times_size);
|
||||
switch (rank) {
|
||||
case 0:
|
||||
*out = x;
|
||||
break;
|
||||
case 1:
|
||||
TileFunctor<T, 1>(x, repeat_times, out);
|
||||
break;
|
||||
case 2:
|
||||
TileFunctor<T, 2>(x, repeat_times, out);
|
||||
break;
|
||||
case 3:
|
||||
TileFunctor<T, 3>(x, repeat_times, out);
|
||||
break;
|
||||
case 4:
|
||||
TileFunctor<T, 4>(x, repeat_times, out);
|
||||
break;
|
||||
case 5:
|
||||
TileFunctor<T, 5>(x, repeat_times, out);
|
||||
break;
|
||||
case 6:
|
||||
TileFunctor<T, 6>(x, repeat_times, out);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void Tile(const FDTensor& x, std::vector<int64_t> repeat_times, FDTensor* out) {
|
||||
FD_VISIT_ALL_TYPES(x.dtype, "TileKernel",
|
||||
([&] { TileKernel<data_t>(x, repeat_times, out); }));
|
||||
}
|
||||
|
||||
} // namespace function
|
||||
} // namespace fastdeploy
|
||||
Reference in New Issue
Block a user