mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Model] Support New PaddleDetection Models (#959)
* Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
@@ -20,6 +20,15 @@
|
||||
- [YOLOv6系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)
|
||||
- [YOLOv7系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7)
|
||||
- [RTMDet系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet)
|
||||
- [CascadeRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/cascade_rcnn)
|
||||
- [PSSDet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/rcnn_enhance)
|
||||
- [RetinaNet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/retinanet)
|
||||
- [PPYOLOESOD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/smalldet)
|
||||
- [FCOS系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/fcos)
|
||||
- [TTFNet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ttfnet)
|
||||
- [TOOD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/tood)
|
||||
- [GFL系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/gfl)
|
||||
|
||||
|
||||
## 导出部署模型
|
||||
|
||||
@@ -59,6 +68,16 @@
|
||||
| [yolov6_s_400e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov6_s_400e_coco.tgz) | 68M | Box AP 43.4%| |
|
||||
| [yolov7_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_l_300e_coco.tgz) | 145M | Box AP 51.0%| |
|
||||
| [yolov7_x_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_x_300e_coco.tgz) | 277M | Box AP 53.0%| |
|
||||
| [cascade_rcnn_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/cascade_rcnn_r50_fpn_1x_coco.tgz) | 271M | Box AP 41.1%| 暂不支持TensorRT、ORT |
|
||||
| [cascade_rcnn_r50_vd_fpn_ssld_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.tgz) | 271M | Box AP 45.0%| 暂不支持TensorRT、ORT |
|
||||
| [faster_rcnn_enhance_3x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_enhance_3x_coco.tgz) | 119M | Box AP 41.5%| 暂不支持TensorRT、ORT |
|
||||
| [fcos_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/fcos_r50_fpn_1x_coco.tgz) | 129M | Box AP 39.6%| 暂不支持TensorRT |
|
||||
| [gfl_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/gfl_r50_fpn_1x_coco.tgz) | 128M | Box AP 41.0%| 暂不支持TensorRT |
|
||||
| [ppyoloe_crn_l_80e_sliced_visdrone_640_025](https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_80e_sliced_visdrone_640_025.tgz) | 200M | Box AP 31.9%| |
|
||||
| [retinanet_r101_fpn_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/retinanet_r101_fpn_2x_coco.tgz) | 210M | Box AP 40.6%| 暂不支持TensorRT、ORT |
|
||||
| [retinanet_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/retinanet_r50_fpn_1x_coco.tgz) | 136M | Box AP 37.5%| 暂不支持TensorRT、ORT |
|
||||
| [tood_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/tood_r50_fpn_1x_coco.tgz) | 130M | Box AP 42.5%| 暂不支持TensorRT、ORT |
|
||||
| [ttfnet_darknet53_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ttfnet_darknet53_1x_coco.tgz) | 178M | Box AP 33.5%| 暂不支持TensorRT、ORT |
|
||||
|
||||
## 详细部署文档
|
||||
|
||||
|
@@ -44,3 +44,27 @@ target_link_libraries(infer_yolov7_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_rtmdet_demo ${PROJECT_SOURCE_DIR}/infer_rtmdet.cc)
|
||||
target_link_libraries(infer_rtmdet_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_cascadercnn_demo ${PROJECT_SOURCE_DIR}/infer_cascadercnn.cc)
|
||||
target_link_libraries(infer_cascadercnn_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_pssdet_demo ${PROJECT_SOURCE_DIR}/infer_pssdet.cc)
|
||||
target_link_libraries(infer_pssdet_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_retinanet_demo ${PROJECT_SOURCE_DIR}/infer_retinanet.cc)
|
||||
target_link_libraries(infer_retinanet_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_ppyoloesod_demo ${PROJECT_SOURCE_DIR}/infer_ppyoloesod.cc)
|
||||
target_link_libraries(infer_ppyoloesod_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_fcos_demo ${PROJECT_SOURCE_DIR}/infer_fcos.cc)
|
||||
target_link_libraries(infer_fcos_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_ttfnet_demo ${PROJECT_SOURCE_DIR}/infer_ttfnet.cc)
|
||||
target_link_libraries(infer_ttfnet_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_tood_demo ${PROJECT_SOURCE_DIR}/infer_tood.cc)
|
||||
target_link_libraries(infer_tood_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_gfl_demo ${PROJECT_SOURCE_DIR}/infer_gfl.cc)
|
||||
target_link_libraries(infer_gfl_demo ${FASTDEPLOY_LIBS})
|
||||
|
@@ -1,6 +1,6 @@
|
||||
# PaddleDetection C++部署示例
|
||||
|
||||
本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括PPYOLOE/PicoDet/YOLOX/YOLOv3/PPYOLO/FasterRCNN/YOLOv5/YOLOv6/YOLOv7/RTMDet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||
本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括PPYOLOE/PicoDet/YOLOX/YOLOv3/PPYOLO/FasterRCNN/YOLOv5/YOLOv6/YOLOv7/RTMDet/CascadeRCNN/PSSDet/RetinaNet/PPYOLOESOD/FCOS/TTFNet/TOOD/GFL在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
@@ -45,7 +45,7 @@ tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
|
||||
### 模型类
|
||||
|
||||
PaddleDetection目前支持6种模型系列,类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`所有类名的构造函数和预测函数在参数上完全一致,本文档以PPYOLOE为例讲解API
|
||||
PaddleDetection目前支持6种模型系列,类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`,`CascadeRCNN`,`PSSDet`,`RetinaNet`,`PPYOLOESOD`,`FCOS`,`TTFNet`,`TOOD`,`GFL`所有类名的构造函数和预测函数在参数上完全一致,本文档以PPYOLOE为例讲解API
|
||||
```c++
|
||||
fastdeploy::vision::detection::PPYOLOE(
|
||||
const string& model_file,
|
||||
|
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::CascadeRCNN(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::CascadeRCNN(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
96
examples/vision/detection/paddledetection/cpp/infer_fcos.cc
Normal file
96
examples/vision/detection/paddledetection/cpp/infer_fcos.cc
Normal file
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::FCOS(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::FCOS(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
96
examples/vision/detection/paddledetection/cpp/infer_gfl.cc
Normal file
96
examples/vision/detection/paddledetection/cpp/infer_gfl.cc
Normal file
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::GFL(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::GFL(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -0,0 +1,127 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::PPYOLOESOD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::PPYOLOESOD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UseTrtBackend();
|
||||
auto model = fastdeploy::vision::detection::PPYOLOESOD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::PSSDet(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::PSSDet(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::RetinaNet(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::RetinaNet(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
96
examples/vision/detection/paddledetection/cpp/infer_tood.cc
Normal file
96
examples/vision/detection/paddledetection/cpp/infer_tood.cc
Normal file
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::TOOD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::TOOD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::TTFNet(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::TTFNet(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -49,6 +49,14 @@ fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, r
|
||||
fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.CascadeRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.PSSDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.RetinaNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.PPYOLOESOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.FCOS(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.TTFNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.TOOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.GFL(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件
|
||||
|
@@ -0,0 +1,50 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.CascadeRCNN(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,50 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.FCOS(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,51 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.GFL(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im.copy())
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,59 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.PPYOLOESOD(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im.copy())
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,50 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.PSSDet(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,50 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.RetinaNet(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,50 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.TOOD(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,50 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.TTFNet(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -260,6 +260,134 @@ class FASTDEPLOY_DECL RTMDet : public PPDetBase {
|
||||
virtual std::string ModelName() const { return "PaddleDetection/RTMDet"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL CascadeRCNN : public PPDetBase {
|
||||
public:
|
||||
CascadeRCNN(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/CascadeRCNN"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL PSSDet : public PPDetBase {
|
||||
public:
|
||||
PSSDet(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/PSSDet"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL RetinaNet : public PPDetBase {
|
||||
public:
|
||||
RetinaNet(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/RetinaNet"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL PPYOLOESOD : public PPDetBase {
|
||||
public:
|
||||
PPYOLOESOD(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::ORT, Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/PPYOLOESOD"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL FCOS : public PPDetBase {
|
||||
public:
|
||||
FCOS(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::PDINFER};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/FCOS"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL TTFNet : public PPDetBase {
|
||||
public:
|
||||
TTFNet(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/TTFNet"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL TOOD : public PPDetBase {
|
||||
public:
|
||||
TOOD(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/TOOD"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL GFL : public PPDetBase {
|
||||
public:
|
||||
GFL(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::ORT, Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::PDINFER};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/GFL"; }
|
||||
};
|
||||
|
||||
} // namespace detection
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
|
@@ -137,5 +137,29 @@ void BindPPDet(pybind11::module& m) {
|
||||
pybind11::class_<vision::detection::RTMDet, vision::detection::PPDetBase>(m, "RTMDet")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
pybind11::class_<vision::detection::CascadeRCNN, vision::detection::PPDetBase>(m, "CascadeRCNN")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
pybind11::class_<vision::detection::PSSDet, vision::detection::PPDetBase>(m, "PSSDet")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
pybind11::class_<vision::detection::RetinaNet, vision::detection::PPDetBase>(m, "RetinaNet")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
pybind11::class_<vision::detection::PPYOLOESOD, vision::detection::PPDetBase>(m, "PPYOLOESOD")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
pybind11::class_<vision::detection::FCOS, vision::detection::PPDetBase>(m, "FCOS")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
pybind11::class_<vision::detection::TTFNet, vision::detection::PPDetBase>(m, "TTFNet")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
pybind11::class_<vision::detection::TOOD, vision::detection::PPDetBase>(m, "TOOD")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
pybind11::class_<vision::detection::GFL, vision::detection::PPDetBase>(m, "GFL")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
|
@@ -513,3 +513,203 @@ class RTMDet(PPYOLOE):
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "RTMDet model initialize failed."
|
||||
|
||||
|
||||
class CascadeRCNN(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a CascadeRCNN model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g cascadercnn/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g cascadercnn/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "CascadeRCNN model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.CascadeRCNN(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "CascadeRCNN model initialize failed."
|
||||
|
||||
|
||||
class PSSDet(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a PSSDet model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g pssdet/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g pssdet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "PSSDet model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.PSSDet(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "PSSDet model initialize failed."
|
||||
|
||||
|
||||
class RetinaNet(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a RetinaNet model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g retinanet/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g retinanet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "RetinaNet model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.RetinaNet(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "RetinaNet model initialize failed."
|
||||
|
||||
|
||||
class PPYOLOESOD(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a PPYOLOESOD model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ppyoloesod/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g ppyoloesod/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "PPYOLOESOD model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.PPYOLOESOD(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "PPYOLOESOD model initialize failed."
|
||||
|
||||
|
||||
class FCOS(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a FCOS model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g fcos/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g fcos/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "FCOS model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.FCOS(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "FCOS model initialize failed."
|
||||
|
||||
|
||||
class TTFNet(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a TTFNet model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ttfnet/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g ttfnet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "TTFNet model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.TTFNet(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "TTFNet model initialize failed."
|
||||
|
||||
|
||||
class TOOD(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a TOOD model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g tood/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g tood/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "TOOD model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.TOOD(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "TOOD model initialize failed."
|
||||
|
||||
|
||||
class GFL(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a GFL model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g gfl/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g gfl/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "GFL model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.GFL(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "GFL model initialize failed."
|
Reference in New Issue
Block a user