mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[Model] Support PaddleDetection SSD Model (#630)
* Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
@@ -15,6 +15,7 @@
|
||||
- [YOLOX系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/yolox)
|
||||
- [FasterRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/faster_rcnn)
|
||||
- [MaskRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/mask_rcnn)
|
||||
- [SSD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ssd)
|
||||
|
||||
## 导出部署模型
|
||||
|
||||
@@ -35,16 +36,17 @@
|
||||
|:---------------------------------------------------------------- |:----- |:----- | :------ |
|
||||
| [picodet_l_320_coco_lcnet](https://bj.bcebos.com/paddlehub/fastdeploy/picodet_l_320_coco_lcnet.tgz) |23MB | Box AP 42.6% |
|
||||
| [ppyoloe_crn_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz) |200MB | Box AP 51.4% |
|
||||
| [ppyoloe_plus_crn_m_80e_coco](https://bj.bcebos.com/fastdeploy/models/ppyoloe_plus_crn_m_80e_coco.tgz) |83.3MB | Box AP 49.8% |
|
||||
| [ppyolo_r50vd_dcn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyolo_r50vd_dcn_1x_coco.tgz) | 180MB | Box AP 44.8% | 暂不支持TensorRT |
|
||||
| [ppyolov2_r101vd_dcn_365e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyolov2_r101vd_dcn_365e_coco.tgz) | 282MB | Box AP 49.7% | 暂不支持TensorRT |
|
||||
| [yolov3_darknet53_270e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov3_darknet53_270e_coco.tgz) |237MB | Box AP 39.1% | |
|
||||
| [yolox_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s_300e_coco.tgz) | 35MB | Box AP 40.4% | |
|
||||
| [faster_rcnn_r50_vd_fpn_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz) | 160MB | Box AP 40.8%| 暂不支持TensorRT |
|
||||
| [mask_rcnn_r50_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz) | 128M | Box AP 37.4%, Mask AP 32.8%| 暂不支持TensorRT、ORT |
|
||||
|
||||
|
||||
| [ssd_mobilenet_v1_300_120e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_mobilenet_v1_300_120e_voc.tgz) | 21.7M | Box AP 73.8%| 暂不支持TensorRT、ORT |
|
||||
| [ssd_vgg16_300_240e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_vgg16_300_240e_voc.tgz) | 97.7M | Box AP 77.8%| 暂不支持TensorRT、ORT |
|
||||
| [ssdlite_mobilenet_v1_300_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ssdlite_mobilenet_v1_300_coco.tgz) | 24.4M | | 暂不支持TensorRT、ORT |
|
||||
## 详细部署文档
|
||||
|
||||
- [Python部署](python)
|
||||
- [C++部署](cpp)
|
||||
- [服务化部署](serving)
|
||||
|
100
examples/vision/detection/paddledetection/cpp/infer_ssd.cc
Normal file
100
examples/vision/detection/paddledetection/cpp/infer_ssd.cc
Normal file
@@ -0,0 +1,100 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
option.UsePaddleBackend();
|
||||
auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ssd_dirname ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -40,6 +40,7 @@ fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime
|
||||
fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件
|
||||
|
@@ -0,0 +1,50 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.SSD(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im.copy())
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -160,6 +160,22 @@ class FASTDEPLOY_DECL MaskRCNN : public PPDetBase {
|
||||
virtual std::string ModelName() const { return "PaddleDetection/MaskRCNN"; }
|
||||
};
|
||||
|
||||
class FASTDEPLOY_DECL SSD : public PPDetBase {
|
||||
public:
|
||||
SSD(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||
model_format) {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::LITE};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
virtual std::string ModelName() const { return "PaddleDetection/SSD"; }
|
||||
};
|
||||
|
||||
} // namespace detection
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
|
@@ -108,5 +108,9 @@ void BindPPDet(pybind11::module& m) {
|
||||
pybind11::class_<vision::detection::MaskRCNN, vision::detection::PPDetBase>(m, "MaskRCNN")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
|
||||
pybind11::class_<vision::detection::SSD, vision::detection::PPDetBase>(m, "SSD")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>());
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
|
@@ -272,3 +272,28 @@ class MaskRCNN(PPYOLOE):
|
||||
|
||||
raise Exception(
|
||||
"batch_predict is not supported for MaskRCNN model now.")
|
||||
|
||||
|
||||
class SSD(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a SSD model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ssd/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g ssd/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "SSD model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.SSD(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "SSD model initialize failed."
|
||||
|
Reference in New Issue
Block a user