[Feature] Support limit thinking len for text models (#3527)

* support limit thinking len

* remove default think_end_id

* remove reasoning_max_tokens

* update think_end_id for ernie

* update think_end_id for ernie.

---------

Co-authored-by: K11OntheBoat <“ruianmaidanglao@163.com”>
Co-authored-by: luukunn <981429396@qq.com>
This commit is contained in:
K11OntheBoat
2025-08-22 14:48:15 +08:00
committed by GitHub
parent 4d6fb96cd6
commit 93d999b830
6 changed files with 64 additions and 26 deletions

View File

@@ -118,6 +118,7 @@ class ModelConfig:
self.enable_redundant_experts = False self.enable_redundant_experts = False
self.redundant_experts_num = 0 self.redundant_experts_num = 0
self.quantization = None self.quantization = None
self.think_end_id = None
for key, value in args.items(): for key, value in args.items():
if hasattr(self, key): if hasattr(self, key):
setattr(self, key, value) setattr(self, key, value)

View File

@@ -121,8 +121,6 @@ class EngineClient:
task["prompt_token_ids_len"] = len(task["prompt_token_ids"]) task["prompt_token_ids_len"] = len(task["prompt_token_ids"])
input_ids_len = task["prompt_token_ids_len"] input_ids_len = task["prompt_token_ids_len"]
task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens")) task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens"))
if task.get("reasoning_max_tokens", None) is None:
task["reasoning_max_tokens"] = max(int(task["max_tokens"] * 0.8), 1)
min_tokens = task.get("min_tokens", 1) min_tokens = task.get("min_tokens", 1)
if "messages" in task: if "messages" in task:
del task["messages"] del task["messages"]

View File

@@ -246,6 +246,10 @@ class ErnieMoEVLProcessor(ErnieProcessor):
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1] request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
if request.get("max_tokens") is None: if request.get("max_tokens") is None:
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"])) request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
else:
request["max_tokens"] = min(max_model_len - len(request["prompt_token_ids"]), request["max_tokens"])
if not request.get("reasoning_max_tokens"):
request["reasoning_max_tokens"] = max(int(request["max_tokens"] * 0.8), 1)
data_processor_logger.info(f"Processed request {request}") data_processor_logger.info(f"Processed request {request}")
return request return request

View File

@@ -160,7 +160,7 @@ def post_process_normal(
) -> ModelRunnerOutput: ) -> ModelRunnerOutput:
"""Post-processing steps after completing a single token generation.""" """Post-processing steps after completing a single token generation."""
# handle vl: # handle vl:
if model_output.enable_thinking: if model_output.enable_thinking and model_output.think_end_id is not None:
exists_think_end = sampler_output.sampled_token_ids == model_output.think_end_id exists_think_end = sampler_output.sampled_token_ids == model_output.think_end_id
paddle.assign( paddle.assign(
paddle.where( paddle.where(

View File

@@ -245,16 +245,21 @@ class GPUModelRunner(ModelRunnerBase):
).unsqueeze([0]) ).unsqueeze([0])
else: else:
position_ids = None position_ids = None
enable_thinking = request.get("enable_thinking", True)
enable_thinking = enable_thinking if enable_thinking is not None else True
self.share_inputs["enable_thinking"][:] = enable_thinking
self.share_inputs["need_think_end"][idx : idx + 1, :] = 1 if enable_thinking else 0
self.share_inputs["reasoning_index"][idx : idx + 1, :] = request.get("reasoning_max_tokens", 2048)
self.share_inputs["rope_emb"][idx : idx + 1, :] = self.prepare_rope3d( self.share_inputs["rope_emb"][idx : idx + 1, :] = self.prepare_rope3d(
position_ids, request.get("max_tokens", 2048) position_ids, request.get("max_tokens", 2048)
) )
if request.get("enable_thinking", False) and request.get("reasoning_max_tokens") is not None:
# Enable thinking
self.share_inputs["enable_thinking"][:] = True
self.share_inputs["need_think_end"][idx : idx + 1, :] = 1
self.share_inputs["reasoning_index"][idx : idx + 1, :] = request.get("reasoning_max_tokens")
else:
# Disable thinking
self.share_inputs["enable_thinking"][:] = False
self.share_inputs["need_think_end"][idx : idx + 1, :] = 0
self.share_inputs["reasoning_index"][idx : idx + 1, :] = 0
input_ids = request.prompt_token_ids + request.output_token_ids input_ids = request.prompt_token_ids + request.output_token_ids
logger.debug( logger.debug(
f"Handle prefill request {request} at idx {idx} prefill_start_index {prefill_start_index} prefill_end_index {prefill_end_index} need_prefilled_token_num {len(input_ids)}" f"Handle prefill request {request} at idx {idx} prefill_start_index {prefill_start_index} prefill_end_index {prefill_end_index} need_prefilled_token_num {len(input_ids)}"
@@ -447,16 +452,22 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["prompt_lens"][idx : idx + 1] = length self.share_inputs["prompt_lens"][idx : idx + 1] = length
if self.enable_mm: if self.enable_mm:
enable_thinking = request.get("enable_thinking", True)
enable_thinking = enable_thinking if enable_thinking is not None else True
self.share_inputs["enable_thinking"][:] = enable_thinking
self.share_inputs["need_think_end"][idx : idx + 1, :] = 1 if enable_thinking else 0
self.share_inputs["reasoning_index"][idx : idx + 1, :] = request.get("reasoning_max_tokens", 2048)
self.share_inputs["rope_emb"][idx : idx + 1, :] = self.prepare_rope3d( self.share_inputs["rope_emb"][idx : idx + 1, :] = self.prepare_rope3d(
position_ids, request.get("max_tokens", 2048) position_ids, request.get("max_tokens", 2048)
) )
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0 self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
if request.get("enable_thinking", False) and request.get("reasoning_max_tokens") is not None:
# Enable thinking
self.share_inputs["enable_thinking"][:] = True
self.share_inputs["need_think_end"][idx : idx + 1, :] = 1
self.share_inputs["reasoning_index"][idx : idx + 1, :] = request.get("reasoning_max_tokens")
else:
# Disable thinking
self.share_inputs["enable_thinking"][:] = False
self.share_inputs["need_think_end"][idx : idx + 1, :] = 0
self.share_inputs["reasoning_index"][idx : idx + 1, :] = 0
def get_attr_from_request(request, attr, default_value=None): def get_attr_from_request(request, attr, default_value=None):
res = request.get(attr, default_value) res = request.get(attr, default_value)
if res is not None: if res is not None:
@@ -669,6 +680,11 @@ class GPUModelRunner(ModelRunnerBase):
# Initialize rotary position embedding # Initialize rotary position embedding
tmp_position_ids = paddle.arange(self.parallel_config.max_model_len).reshape((1, -1)) tmp_position_ids = paddle.arange(self.parallel_config.max_model_len).reshape((1, -1))
# Initialize thinking related buffers
self.share_inputs["need_think_end"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
self.share_inputs["enable_thinking"] = paddle.full(shape=[1], fill_value=False, dtype="bool")
self.share_inputs["reasoning_index"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
# TODO(gongshaotian): move to models # TODO(gongshaotian): move to models
if not self.enable_mm: if not self.enable_mm:
self.share_inputs["rope_emb"] = get_rope( self.share_inputs["rope_emb"] = get_rope(
@@ -755,9 +771,6 @@ class GPUModelRunner(ModelRunnerBase):
dtype="float32", dtype="float32",
) )
self.share_inputs["image_features"] = None self.share_inputs["image_features"] = None
self.share_inputs["need_think_end"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
self.share_inputs["enable_thinking"] = paddle.full(shape=[1], fill_value=True, dtype="bool")
self.share_inputs["reasoning_index"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
def _prepare_inputs(self) -> None: def _prepare_inputs(self) -> None:
"""Prepare the model inputs""" """Prepare the model inputs"""
@@ -1106,10 +1119,10 @@ class GPUModelRunner(ModelRunnerBase):
), ),
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None), accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None), accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
enable_thinking=(self.share_inputs["enable_thinking"] if self.enable_mm else None), enable_thinking=self.share_inputs["enable_thinking"],
think_end_id=(self.model_config.think_end_id if self.enable_mm else -1), think_end_id=self.model_config.think_end_id,
need_think_end=(self.share_inputs["need_think_end"] if self.enable_mm else None), need_think_end=self.share_inputs["need_think_end"],
reasoning_index=(self.share_inputs["reasoning_index"] if self.enable_mm else None), reasoning_index=self.share_inputs["reasoning_index"],
stop_token_ids=self.share_inputs["stop_seqs"], stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"], stop_seqs_len=self.share_inputs["stop_seqs_len"],
) )
@@ -1374,10 +1387,10 @@ class GPUModelRunner(ModelRunnerBase):
), ),
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None), accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None), accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
enable_thinking=(self.share_inputs["enable_thinking"] if self.enable_mm else None), enable_thinking=self.share_inputs["enable_thinking"],
think_end_id=(self.model_config.think_end_id if self.enable_mm else -1), think_end_id=self.model_config.think_end_id,
need_think_end=(self.share_inputs["need_think_end"][:num_running_requests] if self.enable_mm else None), need_think_end=self.share_inputs["need_think_end"][:num_running_requests],
reasoning_index=(self.share_inputs["reasoning_index"][:num_running_requests] if self.enable_mm else None), reasoning_index=self.share_inputs["reasoning_index"][:num_running_requests],
stop_token_ids=self.share_inputs["stop_seqs"], stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"], stop_seqs_len=self.share_inputs["stop_seqs_len"],
) )

View File

@@ -123,6 +123,28 @@ def update_fd_config_for_mm(fd_config: FDConfig) -> None:
fd_config.model_config.sequence_parallel = fd_config.parallel_config.sequence_parallel fd_config.model_config.sequence_parallel = fd_config.parallel_config.sequence_parallel
def update_think_end_id_for_ernie(fd_config: FDConfig) -> None:
"""
Updates the think_end_id in the model config. Uses the ID of '</think>'
if it exists, otherwise defaults to None.
"""
is_ernie = ErnieArchitectures.contains_ernie_arch(fd_config.model_config.architectures)
if is_ernie:
tokenizer = ErnieBotTokenizer.from_pretrained(
fd_config.model_config.model,
model_max_length=fd_config.parallel_config.max_model_len,
padding_side="right",
use_fast=False,
)
vocab = tokenizer.get_vocab()
fd_config.model_config.think_end_id = vocab.get("</think>", None)
if fd_config.model_config.think_end_id is not None:
logger.info(f"Get think_end_id {fd_config.model_config.think_end_id} from vocab.")
else:
logger.info(("No </think> token found in vocabulary, The model can not do reasoning."))
class PaddleDisWorkerProc: class PaddleDisWorkerProc:
""" """
Paddle Distributed wrapper for fastdeploy.worker.Worker, Paddle Distributed wrapper for fastdeploy.worker.Worker,
@@ -710,7 +732,7 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
cache_config=cache_config, cache_config=cache_config,
) )
update_fd_config_for_mm(fd_config) update_fd_config_for_mm(fd_config)
update_think_end_id_for_ernie(fd_config)
return fd_config return fd_config