mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
101
test/operators/test_cutlass_scaled_mm.py
Normal file
101
test/operators/test_cutlass_scaled_mm.py
Normal file
@@ -0,0 +1,101 @@
|
||||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" UT for air_topp_sampling kernel """
|
||||
|
||||
import subprocess
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
from fastdeploy.model_executor.layers.quantization.ops import (
|
||||
cutlass_scaled_mm, scaled_fp8_quant)
|
||||
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
"""
|
||||
Initialize.
|
||||
"""
|
||||
paddle.seed(2024)
|
||||
np.random.seed(42)
|
||||
self.prop = paddle.device.cuda.get_device_properties()
|
||||
self.sm_version = self.prop.major * 10 + self.prop.minor
|
||||
print(self.prop)
|
||||
print(paddle.__git_commit__)
|
||||
nvcc_output = subprocess.check_output(["nvcc", "--version"],
|
||||
universal_newlines=True)
|
||||
output = nvcc_output.split()
|
||||
release_idx = output.index("release") + 1
|
||||
self.nvcc_cuda_version = float(output[release_idx].split(",")[0])
|
||||
|
||||
def test_cutlass_scaled_mm_fp8(self):
|
||||
"""
|
||||
Check cutlass_scaled_mm output.
|
||||
"""
|
||||
if self.sm_version < 89:
|
||||
self.skipTest(
|
||||
"cutlass_scaled_mm with fp8 input only support sm89+")
|
||||
M = 32
|
||||
N = 1024
|
||||
K = 1024
|
||||
a = paddle.rand([M, K], dtype=paddle.bfloat16)
|
||||
b = paddle.rand([N, K], dtype=paddle.bfloat16)
|
||||
b_q, b_scales = scaled_fp8_quant(b, use_per_token_if_dynamic=False)
|
||||
a_q, a_scales = scaled_fp8_quant(a, use_per_token_if_dynamic=True)
|
||||
|
||||
# Ensure quantized tensors and scales are valid
|
||||
assert a_q.numel() > 0, "Quantized tensor 'a_q' must not be empty"
|
||||
assert b_q.numel() > 0, "Quantized tensor 'b_q' must not be empty"
|
||||
assert a_scales.numel(
|
||||
) > 0, "Scale tensor 'a_scales' must not be empty"
|
||||
assert b_scales.numel(
|
||||
) > 0, "Scale tensor 'b_scales' must not be empty"
|
||||
|
||||
bias = paddle.rand([N], dtype=paddle.bfloat16)
|
||||
baseline = paddle.matmul(a, b, transpose_x=False, transpose_y=True)
|
||||
if bias is not None:
|
||||
baseline = paddle.add(baseline, bias)
|
||||
out_type = a.dtype
|
||||
c = cutlass_scaled_mm(a_q, b_q, a_scales, b_scales, out_type, bias)
|
||||
euqal = np.allclose(baseline.numpy(), c.numpy(), rtol=1e-2, atol=1e-2)
|
||||
print(euqal) #
|
||||
|
||||
def test_cutlass_scaled_mm_int8(self):
|
||||
"""
|
||||
Check cutlass_scaled_mm output.
|
||||
"""
|
||||
M = 32
|
||||
N = 1024
|
||||
K = 512
|
||||
a = paddle.rand([M, K], dtype=paddle.bfloat16)
|
||||
b = paddle.rand([N, K], dtype=paddle.bfloat16)
|
||||
a_scales = (a.cast(paddle.float32).abs().max(axis=-1) / 127)[:, None]
|
||||
a_q = paddle.clip(a / a_scales, -127, 127).cast(paddle.int8)
|
||||
b_scales = (b.cast(paddle.float32).abs().max(axis=-1) / 127)[:, None]
|
||||
b_q = paddle.clip(b / b_scales, -127, 127).cast(paddle.int8)
|
||||
|
||||
bias = paddle.rand([N], dtype=paddle.bfloat16)
|
||||
baseline = paddle.matmul(a, b, transpose_x=False, transpose_y=True)
|
||||
if bias is not None:
|
||||
baseline = paddle.add(baseline, bias)
|
||||
out_type = a.dtype
|
||||
c = cutlass_scaled_mm(a_q, b_q, a_scales, b_scales, out_type, bias)
|
||||
euqal = np.allclose(baseline.numpy(), c.numpy(), rtol=1e-2, atol=1e-2)
|
||||
print(euqal) #
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Reference in New Issue
Block a user