mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
165
fastdeploy/worker/xpu_worker.py
Normal file
165
fastdeploy/worker/xpu_worker.py
Normal file
@@ -0,0 +1,165 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
import gc
|
||||
from typing import List, Optional
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.engine.request import Request
|
||||
from fastdeploy.utils import get_logger
|
||||
from fastdeploy.worker.output import ModelRunnerOutput
|
||||
from fastdeploy.worker.worker_base import WorkerBase
|
||||
from fastdeploy.worker.xpu_model_runner import XPUModelRunner
|
||||
|
||||
logger = get_logger("xpu_worker", "xpu_worker.log")
|
||||
|
||||
|
||||
class XpuWorker(WorkerBase):
|
||||
""" """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fd_config: FDConfig,
|
||||
local_rank: int,
|
||||
rank: int,
|
||||
):
|
||||
super().__init__(
|
||||
fd_config=fd_config,
|
||||
local_rank=local_rank,
|
||||
rank=rank,
|
||||
)
|
||||
pass
|
||||
|
||||
def init_device(self):
|
||||
""" Initialize device and Construct model runner
|
||||
"""
|
||||
if paddle.is_compiled_with_xpu():
|
||||
# Set evironment variable
|
||||
self.device = f"xpu:{self.local_rank}"
|
||||
paddle.device.set_device(self.device)
|
||||
paddle.set_default_dtype(self.parallel_config.dtype)
|
||||
self.device_ids = self.parallel_config.device_ids.split(",")
|
||||
|
||||
gc.collect()
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Not support device type: {self.device_config.device}")
|
||||
|
||||
# Construct model runner
|
||||
self.model_runner: XPUModelRunner = XPUModelRunner(
|
||||
fd_config=self.fd_config,
|
||||
device=self.device,
|
||||
rank=self.rank,
|
||||
local_rank=self.local_rank)
|
||||
|
||||
def graph_optimize_and_warm_up_model(self) -> None:
|
||||
"""
|
||||
Optimizes the inference graph using the specified optimization options.
|
||||
"""
|
||||
logger.warn("XPU current could not graph optimize and warm up model")
|
||||
|
||||
def determine_available_memory(self) -> int:
|
||||
"""
|
||||
Profiles the peak memory usage of the model to determine how much
|
||||
memory can be used for KV cache without OOMs.
|
||||
|
||||
The engine will first conduct a profiling of the existing memory usage.
|
||||
Then, it calculate the maximum possible number of GPU and CPU blocks
|
||||
that can be allocated with the remaining free memory.
|
||||
|
||||
Tip:
|
||||
You may limit the usage of GPU memory
|
||||
by adjusting the `gpu_memory_utilization` parameter.
|
||||
"""
|
||||
# logger.warn("XPU current could not determine available memory")
|
||||
from fastdeploy.model_executor.ops.xpu import \
|
||||
xpu_get_free_global_memory, xpu_get_total_global_memory, xpu_get_used_global_memory
|
||||
|
||||
total_memory = xpu_get_total_global_memory(self.local_rank)
|
||||
used_memory = xpu_get_used_global_memory(self.local_rank)
|
||||
free_memory = xpu_get_free_global_memory(self.local_rank)
|
||||
|
||||
logger.info(f"Before warm up, total_memory: {total_memory}, \
|
||||
used_memory: {used_memory}, free_memory: {free_memory}")
|
||||
|
||||
self.model_runner.prepare_profile()
|
||||
self.model_runner.profile_run()
|
||||
|
||||
total_available_memory = int(total_memory * self.parallel_config.gpu_memory_utilization)
|
||||
used_memory = xpu_get_used_global_memory(self.local_rank)
|
||||
available_kv_cache_memory = total_available_memory - used_memory
|
||||
model_block_memory_used = self.cal_theortical_kvcache()
|
||||
available_kv_cache_memory += model_block_memory_used * self.parallel_config.max_block_num
|
||||
|
||||
self.model_runner.clear_block_table()
|
||||
|
||||
logger.info(f"After warm up, total_available_memory: {total_available_memory}, \
|
||||
used_memory: {used_memory}, available_kv_cache_memory: {available_kv_cache_memory}")
|
||||
paddle.device.xpu.empty_cache()
|
||||
return available_kv_cache_memory # approximate value
|
||||
|
||||
def cal_theortical_kvcache(self) -> int:
|
||||
""" """
|
||||
return self.model_runner.cal_theortical_kvcache()
|
||||
|
||||
def load_model(self) -> None:
|
||||
""" """
|
||||
self.model_runner.load_model()
|
||||
|
||||
def get_model(self) -> nn.Layer:
|
||||
""" """
|
||||
return self.model_runner.get_model()
|
||||
|
||||
def initialize_cache(self, num_gpu_blocks: int,
|
||||
num_cpu_blocks: int) -> None:
|
||||
""" """
|
||||
pass
|
||||
|
||||
def execute_model(
|
||||
self,
|
||||
model_forward_batch: Optional[List[Request]] = None,
|
||||
) -> Optional[ModelRunnerOutput]:
|
||||
""" """
|
||||
output = self.model_runner.execute_model(model_forward_batch)
|
||||
return output
|
||||
|
||||
def prefill_finished(self):
|
||||
"""
|
||||
check whether prefill stage finished
|
||||
"""
|
||||
return self.model_runner.prefill_finished()
|
||||
|
||||
def preprocess_new_task(self, req_dicts: List[Request]) -> None:
|
||||
""" Process new requests and then start the decode loop
|
||||
TODO(gongshaotian):The scheduler should schedule the handling of prefill,
|
||||
and workers and modelrunners should not perceive it.
|
||||
"""
|
||||
self.model_runner.process_prefill_inputs(req_dicts=req_dicts)
|
||||
|
||||
def check_health(self) -> bool:
|
||||
""" """
|
||||
return True
|
||||
|
||||
def cal_theortical_kvcache(self) -> int:
|
||||
""" """
|
||||
return self.model_runner.cal_theortical_kvcache()
|
||||
|
||||
def reinitialize_kv_cache(self, num_gpu_blocks: int) -> None:
|
||||
""" """
|
||||
self.model_runner.update_share_input_block_num(
|
||||
num_gpu_blocks=num_gpu_blocks)
|
Reference in New Issue
Block a user