mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-29 13:52:26 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
@@ -14,243 +14,13 @@
|
||||
# limitations under the License.
|
||||
"""
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import field
|
||||
from typing import List
|
||||
|
||||
|
||||
@dataclass
|
||||
class PredictorArgument:
|
||||
model_name_or_path: str = field(
|
||||
default=None, metadata={"help": "The directory of model."})
|
||||
model_prefix: str = field(
|
||||
default="model", metadata={"help": "the prefix name of static model"})
|
||||
src_length: int = field(
|
||||
default=None, metadata={"help": "The max length of source text."})
|
||||
min_length: int = field(default=1,
|
||||
metadata={"help": "the min length for decoding."})
|
||||
max_length: int = field(default=1024,
|
||||
metadata={"help": "the max length for decoding."})
|
||||
top_k: int = field(default=0,
|
||||
metadata={"help": "top_k parameter for generation"})
|
||||
top_p: float = field(default=0.7,
|
||||
metadata={"help": "top_p parameter for generation"})
|
||||
temperature: float = field(
|
||||
default=0.95,
|
||||
metadata={"help": "temperature parameter for generation"})
|
||||
repetition_penalty: float = field(
|
||||
default=1.0,
|
||||
metadata={"help": "repetition penalty parameter for generation"})
|
||||
device: str = field(default="gpu", metadata={"help": "Device"})
|
||||
dtype: str = field(default=None, metadata={"help": "Model dtype"})
|
||||
lora_path: str = field(
|
||||
default=None,
|
||||
metadata={"help": "The directory of LoRA parameters. Default to None"})
|
||||
export_precache: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "whether use prefix weight to do infer"})
|
||||
prefix_path: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help":
|
||||
"The directory of Prefix Tuning parameters. Default to None"
|
||||
})
|
||||
decode_strategy: str = field(
|
||||
default="sampling",
|
||||
metadata={
|
||||
"help":
|
||||
"the decoding strategy of generation, which should be one of "
|
||||
"['sampling', 'greedy_search', 'beam_search']. Default to sampling"
|
||||
},
|
||||
)
|
||||
use_flash_attention: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether to use flash attention"},
|
||||
)
|
||||
|
||||
mode: str = field(
|
||||
default="dynamic",
|
||||
metadata={
|
||||
"help":
|
||||
"the type of predictor, it should be one of [dynamic, static]"
|
||||
})
|
||||
inference_model: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "whether use InferenceModel to do generation"})
|
||||
quant_type: str = field(
|
||||
default="",
|
||||
metadata={
|
||||
"help":
|
||||
"Quantization type. Supported values: a8w8, a8w8c8, a8w8_fp8, "
|
||||
"a8w8c8_fp8, weight_only_int4, weight_only_int8"
|
||||
},
|
||||
)
|
||||
avx_model: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help":
|
||||
"whether use AvxModel to do generation when using cpu inference"
|
||||
})
|
||||
avx_type: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help":
|
||||
"avx compute type. Supported values: fp16, bf16,fp16_int8\
|
||||
fp16: first_token and next_token run in fp16\
|
||||
fp16_int8 : first_token run in fp16, next token run in int8"
|
||||
},
|
||||
)
|
||||
avx_cachekv_type: str = field(
|
||||
default="fp16",
|
||||
metadata={"help": "avx cachekv type. Supported values: fp16,int8"},
|
||||
)
|
||||
batch_size: int = field(default=1,
|
||||
metadata={"help": "The batch size of data."})
|
||||
benchmark: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help":
|
||||
"If benchmark set as `True`, we will force model decode to max_length, "
|
||||
"which is helpful to compute throughput. "
|
||||
},
|
||||
)
|
||||
use_fake_parameter: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "use fake parameter, for ptq scales now."})
|
||||
block_attn: bool = field(default=False,
|
||||
metadata={"help": "whether use block attention"})
|
||||
block_size: int = field(default=64,
|
||||
metadata={"help": "the block size for cache_kvs."})
|
||||
cachekv_int8_type: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help":
|
||||
"If cachekv_int8_type set as `dynamic`, cache kv would be quantized to "
|
||||
"int8 dynamically. If cachekv_int8_type set as `static`, cache kv would "
|
||||
"be quantized to int8 Statically."
|
||||
},
|
||||
)
|
||||
|
||||
append_attn: bool = field(
|
||||
default=False, metadata={"help": "whether use append attention"})
|
||||
|
||||
chat_template: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help":
|
||||
"the path of `chat_template.json` file to handle multi-rounds conversation. "
|
||||
"If is None(do not set --chat_template argument), it will use the default `chat_template.json`;"
|
||||
"If is equal with `model_name_or_path`, it will use the default loading; "
|
||||
"If is directory, it will find the `chat_template.json` under the directory; If is file, it will load it."
|
||||
"If is none string, it will not use chat_template.json."
|
||||
},
|
||||
)
|
||||
|
||||
total_max_length: int = field(
|
||||
default=4096,
|
||||
metadata={
|
||||
"help":
|
||||
"Super parameter. Maximum sequence length(encoder+decoder)."
|
||||
})
|
||||
speculate_method: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help":
|
||||
"speculate method, it should be one of ['None', 'inference_with_reference', 'eagle', 'mtp']"
|
||||
},
|
||||
)
|
||||
speculate_max_draft_token_num: int = field(
|
||||
default=1,
|
||||
metadata={
|
||||
"help": "the max length of draft tokens for speculate method."
|
||||
},
|
||||
)
|
||||
speculate_max_ngram_size: int = field(
|
||||
default=1,
|
||||
metadata={"help": "the max ngram size of speculate method."})
|
||||
speculate_verify_window: int = field(
|
||||
default=2,
|
||||
metadata={
|
||||
"help": "the max length of verify window for speculate method."
|
||||
})
|
||||
speculate_max_candidate_len: int = field(
|
||||
default=5, metadata={"help": "the max length of candidate tokens."})
|
||||
draft_model_name_or_path: str = field(
|
||||
default=None,
|
||||
metadata={"help": "The directory of eagle or draft model"})
|
||||
draft_model_quant_type: str = field(
|
||||
default="",
|
||||
metadata={
|
||||
"help": "Draft model quantization type. Reserved for future"
|
||||
},
|
||||
)
|
||||
return_full_hidden_states: bool = field(
|
||||
default=False, metadata={"help": "whether return full hidden_states"})
|
||||
|
||||
mla_use_matrix_absorption: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "implement mla with matrix-absorption."})
|
||||
weightonly_group_size: int = field(
|
||||
default=-1, metadata={"help": "the max length of candidate tokens."})
|
||||
weight_block_size: List[int] = field(
|
||||
default_factory=lambda: [128, 128],
|
||||
metadata={
|
||||
"help":
|
||||
"Quantitative granularity of weights. Supported values: [128 128]"
|
||||
},
|
||||
)
|
||||
moe_quant_type: str = field(
|
||||
default="",
|
||||
metadata={
|
||||
"help":
|
||||
"Quantization type of moe. Supported values: weight_only_int4, weight_only_int8"
|
||||
},
|
||||
)
|
||||
output_via_mq: bool = field(
|
||||
default=True,
|
||||
metadata={
|
||||
"help": "Controls whether the message queue is enabled for output"
|
||||
},
|
||||
)
|
||||
dynamic_insert: bool = field(
|
||||
default=False, metadata={"help": "whether use dynamic insert"})
|
||||
total_request_num: int = field(
|
||||
default=None, metadata={"help": "The total number of request data"})
|
||||
|
||||
def __post_init__(self):
|
||||
if self.speculate_method is not None:
|
||||
self.append_attn = True
|
||||
if self.append_attn:
|
||||
self.block_attn = True
|
||||
if self.block_attn:
|
||||
self.inference_model = True
|
||||
assert self.max_length < self.total_max_length, "max_length should smaller than total_max_length."
|
||||
if self.src_length is None:
|
||||
self.src_length = self.total_max_length - self.max_length
|
||||
# update config parameter for inference predictor
|
||||
if self.decode_strategy == "greedy_search":
|
||||
self.top_p = 0.0
|
||||
self.temperature = 1.0
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgument:
|
||||
model_type: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help":
|
||||
"the type of the model, which can be one of ['gpt-3', 'ernie-3.5-se', 'llama-img2txt']"
|
||||
},
|
||||
)
|
||||
data_file: str = field(default=None,
|
||||
metadata={"help": "data file directory"})
|
||||
output_file: str = field(
|
||||
default="output.json",
|
||||
metadata={"help": "predict result file directory"})
|
||||
|
||||
|
||||
def check_safetensors_model(model_dir):
|
||||
"""Check whther the model is safetensors format"""
|
||||
def check_safetensors_model(model_dir: str):
|
||||
"""
|
||||
model_dir : the directory of the model
|
||||
Check whther the model is safetensors format
|
||||
"""
|
||||
model_files = list()
|
||||
all_files = os.listdir(model_dir)
|
||||
for x in all_files:
|
||||
|
Reference in New Issue
Block a user