mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
210
fastdeploy/worker/gpu_worker.py
Normal file
210
fastdeploy/worker/gpu_worker.py
Normal file
@@ -0,0 +1,210 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
import gc
|
||||
import time
|
||||
from typing import List, Optional
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import pynvml
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.engine.request import Request
|
||||
from fastdeploy.utils import get_logger
|
||||
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
|
||||
from fastdeploy.worker.output import ModelRunnerOutput
|
||||
from fastdeploy.worker.worker_base import WorkerBase
|
||||
|
||||
logger = get_logger("gpu_worker", "gpu_worker.log")
|
||||
|
||||
|
||||
class GpuWorker(WorkerBase):
|
||||
""" """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fd_config: FDConfig,
|
||||
local_rank: int,
|
||||
rank: int,
|
||||
):
|
||||
super().__init__(
|
||||
fd_config=fd_config,
|
||||
local_rank=local_rank,
|
||||
rank=rank,
|
||||
)
|
||||
pass
|
||||
|
||||
def init_device(self):
|
||||
""" Initialize device and Construct model runner
|
||||
"""
|
||||
if self.device_config.device_type == "cuda" and paddle.device.is_compiled_with_cuda(
|
||||
):
|
||||
# Set evironment variable
|
||||
self.device_ids = self.parallel_config.device_ids.split(",")
|
||||
self.device = f"gpu:{self.local_rank}"
|
||||
paddle.device.set_device(self.device)
|
||||
paddle.set_default_dtype(self.parallel_config.dtype)
|
||||
|
||||
gc.collect()
|
||||
paddle.device.cuda.empty_cache()
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Not support device type: {self.device_config.device}")
|
||||
|
||||
# Construct model runner
|
||||
self.model_runner: GPUModelRunner = GPUModelRunner(
|
||||
fd_config=self.fd_config,
|
||||
device=self.device,
|
||||
device_id=self.device_ids[self.local_rank],
|
||||
rank=self.rank,
|
||||
local_rank=self.local_rank)
|
||||
|
||||
def prefill_finished(self):
|
||||
"""
|
||||
check whether prefill stage finished
|
||||
"""
|
||||
return self.model_runner.prefill_finished()
|
||||
|
||||
def determine_available_memory(self) -> int:
|
||||
"""
|
||||
Profiles the peak memory usage of the model to determine how much
|
||||
memory can be used for KV cache without OOMs.
|
||||
|
||||
The engine will first conduct a profiling of the existing memory usage.
|
||||
Then, it calculate the maximum possible number of GPU and CPU blocks
|
||||
that can be allocated with the remaining free memory.
|
||||
|
||||
Tip:
|
||||
You may limit the usage of GPU memory
|
||||
by adjusting the `gpu_memory_utilization` parameter.
|
||||
"""
|
||||
# 1. Record memory state before profile run
|
||||
start_time = time.perf_counter()
|
||||
Gb = 1024**3
|
||||
paddle.device.cuda.reset_max_memory_reserved(self.local_rank)
|
||||
paddle.device.cuda.reset_max_memory_allocated(self.local_rank)
|
||||
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(
|
||||
self.local_rank)
|
||||
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(
|
||||
self.local_rank) # not reserved
|
||||
|
||||
pynvml.nvmlInit()
|
||||
handle = pynvml.nvmlDeviceGetHandleByIndex(
|
||||
int(self.device_ids[self.local_rank]))
|
||||
before_run_meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
|
||||
logger.info((
|
||||
"Before running the profile, the memory usage info is as follows:",
|
||||
f"\nDevice Total memory: {before_run_meminfo.total / Gb}",
|
||||
f"\nDevice used memory: {before_run_meminfo.used / Gb}",
|
||||
f"\nDevice free memory: {before_run_meminfo.free / Gb}",
|
||||
f"\nPaddle reserved memory: {paddle_reserved_mem_before_run / Gb}",
|
||||
f"\nPaddle allocated memory: {paddle_allocated_mem_before_run / Gb}"))
|
||||
|
||||
# 2. Profile run
|
||||
self.model_runner.profile_run()
|
||||
|
||||
# 3. Statistical memory information
|
||||
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(
|
||||
self.local_rank)
|
||||
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(
|
||||
self.local_rank)
|
||||
|
||||
|
||||
|
||||
# NOTE(gongshaotian): v1 worker
|
||||
# not_paddle_use_mem = after_run_meminfo.used - paddle_reserved_mem_after_run
|
||||
# peak_memory = paddle_allocated_mem_after_run + not_paddle_use_mem
|
||||
# available_kv_cache_memory = after_run_meminfo.total * \
|
||||
# self.parallel_config.gpu_memory_utilization - peak_memory
|
||||
|
||||
# v0 worker
|
||||
model_block_memory_used = self.cal_theortical_kvcache()
|
||||
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
|
||||
|
||||
paddle.device.cuda.empty_cache()
|
||||
|
||||
after_run_meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
pynvml.nvmlShutdown()
|
||||
|
||||
available_kv_cache_memory = after_run_meminfo.total * \
|
||||
self.parallel_config.gpu_memory_utilization - after_run_meminfo.used - paddle_peak_increase
|
||||
available_kv_cache_memory += model_block_memory_used * self.parallel_config.max_block_num
|
||||
|
||||
|
||||
end_time = time.perf_counter()
|
||||
logger.info(
|
||||
("After running the profile, the memory usage info is as follows:",
|
||||
f"\nDevice Total memory: {after_run_meminfo.total / Gb}",
|
||||
f"\nDevice used memory: {after_run_meminfo.used / Gb}",
|
||||
f"\nDevice free memory: {after_run_meminfo.free / Gb}",
|
||||
f"\nPaddle reserved memory: {paddle_reserved_mem_after_run / Gb}",
|
||||
f"\nPaddle allocated memory: {paddle_allocated_mem_after_run / Gb}",
|
||||
f"\nAvailable KV Cache meomory: {available_kv_cache_memory / Gb}",
|
||||
f"Profile time: {end_time - start_time}"))
|
||||
|
||||
return available_kv_cache_memory # return to caculate the block num in this device
|
||||
|
||||
def load_model(self) -> None:
|
||||
""" """
|
||||
self.model_runner.load_model()
|
||||
|
||||
def get_model(self) -> nn.Layer:
|
||||
""" """
|
||||
return self.model_runner.get_model()
|
||||
|
||||
def initialize_cache(self, num_gpu_blocks: int,
|
||||
num_cpu_blocks: int) -> None:
|
||||
""" """
|
||||
pass
|
||||
|
||||
def execute_model(
|
||||
self,
|
||||
model_forward_batch: Optional[List[Request]] = None,
|
||||
) -> Optional[ModelRunnerOutput]:
|
||||
""" """
|
||||
output = self.model_runner.execute_model(model_forward_batch)
|
||||
return output
|
||||
|
||||
def preprocess_new_task(self, req_dicts: List[Request]) -> None:
|
||||
""" Process new requests and then start the decode loop
|
||||
TODO(gongshaotian):The scheduler should schedule the handling of prefill,
|
||||
and workers and modelrunners should not perceive it.
|
||||
"""
|
||||
self.model_runner.insert_prefill_inputs(req_dicts=req_dicts)
|
||||
|
||||
def graph_optimize_and_warm_up_model(self) -> None:
|
||||
"""
|
||||
Perform the warm-up and the graph optimization
|
||||
"""
|
||||
# 1. Warm up model
|
||||
# NOTE(gongshaotian): may be not need warm_up at this place
|
||||
|
||||
# 2. Triger cuda grpah capture
|
||||
self.model_runner.capture_model()
|
||||
|
||||
def check_health(self) -> bool:
|
||||
""" """
|
||||
return True
|
||||
|
||||
def cal_theortical_kvcache(self) -> int:
|
||||
""" """
|
||||
return self.model_runner.cal_theortical_kvcache()
|
||||
|
||||
def reinitialize_kv_cache(self, num_gpu_blocks: int) -> None:
|
||||
""" """
|
||||
self.model_runner.update_share_input_block_num(
|
||||
num_gpu_blocks=num_gpu_blocks)
|
Reference in New Issue
Block a user