mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-03 07:46:50 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
@@ -20,9 +20,12 @@ from functools import partial
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddlenlp.transformers import PretrainedModel
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import LLMConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
||||
from fastdeploy.model_executor.layers.attention import Attention
|
||||
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
||||
@@ -31,7 +34,7 @@ from fastdeploy.model_executor.layers.linear import (
|
||||
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.worker.model_runner import ForwardMeta
|
||||
from fastdeploy.worker.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Qwen2MLP(nn.Layer):
|
||||
@@ -40,32 +43,33 @@ class Qwen2MLP(nn.Layer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_config: LLMConfig,
|
||||
fd_config: FDConfig,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.nranks = llm_config.parallel_config.mp_size
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
llm_config=llm_config,
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.up_gate_proj",
|
||||
input_size=fd_config.model_config.hidden_size,
|
||||
output_size=fd_config.model_config.ffn_hidden_size * 2,
|
||||
with_bias=False,
|
||||
activation=llm_config.model_config.hidden_act,
|
||||
activation=fd_config.model_config.hidden_act,
|
||||
use_fast_ffn=True,
|
||||
)
|
||||
|
||||
self.down_proj = RowParallelLinear(
|
||||
llm_config=llm_config,
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
input_size=(llm_config.model_config.ffn_hidden_size //
|
||||
self.nranks),
|
||||
output_size=llm_config.model_config.hidden_size,
|
||||
input_size=(fd_config.model_config.ffn_hidden_size // self.nranks),
|
||||
output_size=fd_config.model_config.hidden_size,
|
||||
with_bias=False,
|
||||
)
|
||||
|
||||
self.act_fn = SiluAndMul(
|
||||
llm_config=llm_config,
|
||||
fd_config=fd_config,
|
||||
bias=getattr(self.gate_up_proj, "linear_bias", None),
|
||||
act_method=llm_config.model_config.hidden_act,
|
||||
act_method=fd_config.model_config.hidden_act,
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -88,25 +92,25 @@ class Qwen2Attention(nn.Layer):
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
llm_config: LLMConfig,
|
||||
fd_config: FDConfig,
|
||||
layer_id: int,
|
||||
prefix: str = "") -> None:
|
||||
super().__init__()
|
||||
|
||||
nranks = llm_config.parallel_config.mp_size
|
||||
nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(llm_config=llm_config,
|
||||
self.qkv_proj = QKVParallelLinear(fd_config=fd_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
with_bias=True)
|
||||
|
||||
self.o_proj = RowParallelLinear(
|
||||
llm_config=llm_config,
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
input_size=(llm_config.model_config.hidden_size // nranks),
|
||||
output_size=llm_config.model_config.hidden_size,
|
||||
input_size=(fd_config.model_config.hidden_size // nranks),
|
||||
output_size=fd_config.model_config.hidden_size,
|
||||
)
|
||||
|
||||
self.attn = Attention(llm_config=llm_config,
|
||||
self.attn = Attention(fd_config=fd_config,
|
||||
layer_id=layer_id,
|
||||
prefix=prefix,
|
||||
use_neox_rotary_style=True)
|
||||
@@ -140,33 +144,33 @@ class Qwen2DecoderLayer(nn.Layer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_config: LLMConfig,
|
||||
fd_config: FDConfig,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
layer_id = int(prefix.split(sep='.')[-1])
|
||||
|
||||
self.self_attn = Qwen2Attention(
|
||||
llm_config=llm_config,
|
||||
fd_config=fd_config,
|
||||
layer_id=layer_id,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
self.mlp = Qwen2MLP(
|
||||
llm_config=llm_config,
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
|
||||
self.input_layernorm = RMSNorm(
|
||||
llm_config,
|
||||
hidden_size=llm_config.model_config.hidden_size,
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=1e-6,
|
||||
prefix=f"{prefix}.input_layernorm",
|
||||
)
|
||||
|
||||
self.post_attention_layernorm = RMSNorm(
|
||||
llm_config,
|
||||
hidden_size=llm_config.model_config.hidden_size,
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=1e-6,
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
)
|
||||
@@ -209,13 +213,14 @@ class Qwen2DecoderLayer(nn.Layer):
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
@support_graph_optimization
|
||||
class Qwen2Model(nn.Layer):
|
||||
"""
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_config: LLMConfig = None,
|
||||
fd_config: FDConfig = None,
|
||||
):
|
||||
"""
|
||||
Initializer for the Qwen2Model class.
|
||||
@@ -225,29 +230,29 @@ class Qwen2Model(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = llm_config.model_config.num_layers
|
||||
llm_config.model_config.prefix_name = "qwen2"
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "qwen2"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
llm_config=llm_config,
|
||||
num_embeddings=llm_config.model_config.vocab_size,
|
||||
embedding_dim=llm_config.model_config.hidden_size,
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{llm_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
Qwen2DecoderLayer(
|
||||
llm_config=llm_config,
|
||||
prefix=f"{llm_config.model_config.prefix_name}.layers.{i}")
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
self.norm = RMSNorm(
|
||||
llm_config,
|
||||
hidden_size=llm_config.model_config.hidden_size,
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=1e-5,
|
||||
prefix=f"{llm_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -262,6 +267,7 @@ class Qwen2Model(nn.Layer):
|
||||
self.embeddings.load_state_dict(state_dict)
|
||||
self.norm.load_state_dict(state_dict)
|
||||
for i in range(self.num_layers):
|
||||
logger.info(f"Start load layer {i}")
|
||||
self.layers[i].load_state_dict(state_dict)
|
||||
|
||||
def forward(
|
||||
@@ -292,21 +298,21 @@ class Qwen2ForCausalLM(ModelForCasualLM):
|
||||
Qwen2ForCausalLM
|
||||
"""
|
||||
|
||||
def __init__(self, llm_config: LLMConfig):
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
"""
|
||||
Args:
|
||||
llm_config (LLMConfig): Configurations for the LLM model.
|
||||
fd_config (FDConfig): Configurations for the LLM model.
|
||||
"""
|
||||
super(Qwen2ForCausalLM, self).__init__(llm_config)
|
||||
super(Qwen2ForCausalLM, self).__init__(fd_config)
|
||||
|
||||
self.model = Qwen2Model(llm_config=llm_config)
|
||||
self.model = Qwen2Model(fd_config=fd_config)
|
||||
|
||||
self.ori_vocab_size = llm_config.model_config.ori_vocab_size
|
||||
self.ori_vocab_size = fd_config.model_config.ori_vocab_size
|
||||
|
||||
self.lm_head = ParallelLMHead(
|
||||
llm_config=llm_config,
|
||||
embedding_dim=llm_config.model_config.hidden_size,
|
||||
num_embeddings=llm_config.model_config.vocab_size,
|
||||
fd_config=fd_config,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
prefix="lm_head",
|
||||
)
|
||||
|
||||
@@ -345,7 +351,8 @@ class Qwen2ForCausalLM(ModelForCasualLM):
|
||||
):
|
||||
"""
|
||||
"""
|
||||
hidden_states = self.model(ids_remove_padding, forward_meta)
|
||||
hidden_states = self.model(ids_remove_padding=ids_remove_padding,
|
||||
forward_meta=forward_meta)
|
||||
|
||||
return hidden_states
|
||||
|
||||
@@ -355,7 +362,7 @@ class Qwen2PretrainedModel(PretrainedModel):
|
||||
Qwen2PretrainedModel
|
||||
"""
|
||||
|
||||
config_class = LLMConfig
|
||||
config_class = FDConfig
|
||||
|
||||
def _init_weight(self, layer):
|
||||
"""
|
||||
@@ -366,7 +373,8 @@ class Qwen2PretrainedModel(PretrainedModel):
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
|
||||
from paddlenlp.transformers.conversion_utils import split_or_merge_func
|
||||
from paddleformers.transformers.conversion_utils import \
|
||||
split_or_merge_func
|
||||
|
||||
fn = split_or_merge_func(
|
||||
is_split=is_split,
|
||||
|
Reference in New Issue
Block a user