mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
@@ -14,32 +14,37 @@
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from typing import Tuple
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import Tensor
|
||||
from paddle import Tensor, nn
|
||||
from paddle.framework import in_dynamic_mode
|
||||
from scipy.linalg import block_diag
|
||||
|
||||
from fastdeploy.platforms import current_platform
|
||||
|
||||
if current_platform.is_cuda() and current_platform.available():
|
||||
try:
|
||||
from fastdeploy.model_executor.ops.gpu import (
|
||||
get_padding_offset,
|
||||
speculate_get_padding_offset,
|
||||
)
|
||||
get_padding_offset, speculate_get_padding_offset)
|
||||
except Exception:
|
||||
raise ImportError(
|
||||
f"Verify environment consistency between compilation and FastDeploy installation. "
|
||||
f"And ensure the Paddle version supports FastDeploy's custom operators"
|
||||
"Verify environment consistency between compilation and FastDeploy installation. "
|
||||
"And ensure the Paddle version supports FastDeploy's custom operators"
|
||||
)
|
||||
import re
|
||||
|
||||
import os
|
||||
cache_params = os.getenv("CACHE_PARAMS", "none")
|
||||
from fastdeploy import envs
|
||||
|
||||
cache_params = envs.FD_CACHE_PARAMS
|
||||
if cache_params != "none":
|
||||
c8_state_dict = paddle.load(cache_params, return_numpy=True)
|
||||
|
||||
def per_block_cast_to_fp8(x: Tensor) -> Tuple[Tensor, Tensor]:
|
||||
|
||||
def per_block_cast_to_fp8(x: Tensor,
|
||||
block_size: list = [128,
|
||||
128]) -> Tuple[Tensor, Tensor]:
|
||||
"""
|
||||
Only used in deep_gemm block wise quant weight.
|
||||
copy from FastDeploy/custom_ops/gpu_ops/fp8_deep_gemm/tests/test_core.py.
|
||||
@@ -48,10 +53,13 @@ def per_block_cast_to_fp8(x: Tensor) -> Tuple[Tensor, Tensor]:
|
||||
|
||||
assert x.dim() == 2
|
||||
m, n = x.shape
|
||||
x_padded = paddle.zeros((ceil_div(m, 128) * 128, ceil_div(n, 128) * 128),
|
||||
x_padded = paddle.zeros((ceil_div(m, block_size[0]) * block_size[0],
|
||||
ceil_div(n, block_size[1]) * block_size[1]),
|
||||
dtype=x.dtype)
|
||||
x_padded[:m, :n] = x
|
||||
x_view = paddle.view(x_padded, (-1, 128, x_padded.shape[1] // 128, 128))
|
||||
x_view = paddle.view(
|
||||
x_padded,
|
||||
(-1, block_size[0], x_padded.shape[1] // block_size[1], block_size[1]))
|
||||
|
||||
x_abs = paddle.abs(x_view).astype(paddle.float32)
|
||||
x_amax = paddle.amax(x_abs, axis=(1, 3), keepdim=True)
|
||||
@@ -63,15 +71,15 @@ def per_block_cast_to_fp8(x: Tensor) -> Tuple[Tensor, Tensor]:
|
||||
|
||||
|
||||
# for distributed tensor model parallel
|
||||
def _set_var_distributed(var, split_axis):
|
||||
def _set_var_distributed(var: Tensor, split_axis: int):
|
||||
"""
|
||||
Set whether the variable is distributed. If the variable is None, no operation will be performed.
|
||||
|
||||
Args:
|
||||
var (Variable, Optional): A Variable object, which can be None. The default value is None.
|
||||
The Variable object should have an attribute 'is_distributed' to indicate whether
|
||||
the variable has been processed in a distributed manner.
|
||||
split_axis (Integer): the sharding dimension of dist tensors
|
||||
var (Tensor): A Variable object, which can be None. The default value is None.
|
||||
The Variable object should have an attribute 'is_distributed' to indicate whether
|
||||
the variable has been processed in a distributed manner.
|
||||
split_axis (int): the sharding dimension of dist tensors.
|
||||
|
||||
Returns:
|
||||
None. No return value.
|
||||
@@ -91,10 +99,16 @@ def _set_var_distributed(var, split_axis):
|
||||
main_block._find_var_recursive(var.name).is_distributed = True
|
||||
|
||||
|
||||
def get_tensor(input):
|
||||
def get_tensor(input: Union[paddle.Tensor, np.ndarray, str]) -> paddle.Tensor:
|
||||
"""
|
||||
EP并行中,权重按层分布式存储,为了节省峰值显存,在state_dict处理部分仅保存
|
||||
层名与对应权重的路径,因此需要将权重的类型转换为paddle.Tensor
|
||||
Return a corresponding PaddlePaddle tensor based on the type and content of the input.
|
||||
|
||||
Args:
|
||||
input (Union[paddle.Tensor, np.ndarray, str]): The input data.
|
||||
|
||||
Returns:
|
||||
paddle.Tensor: Returns a PaddlePaddle tensor.
|
||||
|
||||
"""
|
||||
if isinstance(input, paddle.Tensor):
|
||||
if input.place.is_cpu_place():
|
||||
@@ -104,7 +118,6 @@ def get_tensor(input):
|
||||
return paddle.to_tensor(input)
|
||||
elif isinstance(input, str):
|
||||
if ".safetensors" in input:
|
||||
|
||||
match = re.match(r"\[(.*?)\](.*)", input)
|
||||
if match:
|
||||
key_name = match.group(1)
|
||||
@@ -116,12 +129,11 @@ def get_tensor(input):
|
||||
weight = f.get_tensor(key_name)
|
||||
weight = paddle.Tensor(weight, zero_copy=True)
|
||||
weight = weight._copy_to(
|
||||
paddle.framework._current_expected_place(), False
|
||||
)
|
||||
paddle.framework._current_expected_place(), False)
|
||||
return weight
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
else:
|
||||
if cache_params != "none":
|
||||
tmp_key = input.split("/")[-1]
|
||||
if tmp_key in c8_state_dict:
|
||||
@@ -129,25 +141,134 @@ def get_tensor(input):
|
||||
return paddle.to_tensor(c8_state_dict.pop(tmp_key))
|
||||
return paddle.load(input)
|
||||
else:
|
||||
# 理论上不会命中这个分支
|
||||
return input
|
||||
|
||||
|
||||
def matmul_hadU(X: Tensor) -> paddle.Tensor:
|
||||
"""
|
||||
Perform matrix multiplication using the Hadamard matrix.
|
||||
|
||||
Args:
|
||||
X (Tensor): The tensor to be multiplied.
|
||||
|
||||
Returns:
|
||||
Tensor: The tensor after Hadamard matrix multiplication, with the same shape as the input tensor X.
|
||||
|
||||
"""
|
||||
input = X.clone().reshape((-1, X.shape[-1], 1))
|
||||
output = input.clone()
|
||||
while input.shape[1] > 1:
|
||||
input = input.reshape(
|
||||
(input.shape[0], input.shape[1] // 2, 2, input.shape[2]))
|
||||
output = output.reshape(input.shape)
|
||||
output[:, :, 0, :] = input[:, :, 0, :] + input[:, :, 1, :]
|
||||
output[:, :, 1, :] = input[:, :, 0, :] - input[:, :, 1, :]
|
||||
output = output.reshape((input.shape[0], input.shape[1], -1))
|
||||
(input, output) = (output, input)
|
||||
del output
|
||||
return input.reshape(X.shape)
|
||||
|
||||
|
||||
def random_hadamard_matrix(block_size: int,
|
||||
dtype: Union[paddle.dtype, str]) -> paddle.Tensor:
|
||||
"""
|
||||
Generate a random Hadamard matrix.
|
||||
|
||||
Args:
|
||||
block_size (int): The size of the block, i.e., the number of rows and columns of the matrix.
|
||||
dtype (str): The data type, for example 'float32'.
|
||||
|
||||
Returns:
|
||||
paddle.Tensor: The generated random Hadamard matrix.
|
||||
|
||||
"""
|
||||
Q = paddle.diag(paddle.ones((block_size), dtype=dtype))
|
||||
block = matmul_hadU(Q)
|
||||
return block
|
||||
|
||||
|
||||
def create_hadamard_matrix(hidden_size: int) -> paddle.Tensor:
|
||||
"""
|
||||
Generate a Hadamard matrix.
|
||||
|
||||
Args:
|
||||
hidden_size (int): The size of the hidden layer.
|
||||
|
||||
Returns:
|
||||
paddle.Tensor: The generated Hadamard matrix.
|
||||
|
||||
"""
|
||||
hadamard_block_size = 32
|
||||
h = random_hadamard_matrix(hadamard_block_size, "float32")
|
||||
block_num = hidden_size // hadamard_block_size
|
||||
hadamard_matrix = paddle.to_tensor(
|
||||
block_diag(*[h for i in range(block_num)]))
|
||||
return hadamard_matrix
|
||||
|
||||
|
||||
create_hadamard_matrix_map = {}
|
||||
# Zkk: below key are used in 4.5T fp8.
|
||||
create_hadamard_matrix_map[8192] = create_hadamard_matrix(8192)
|
||||
create_hadamard_matrix_map[448] = create_hadamard_matrix(448)
|
||||
create_hadamard_matrix_map[1024] = create_hadamard_matrix(1024)
|
||||
create_hadamard_matrix_map[3584] = create_hadamard_matrix(3584)
|
||||
|
||||
|
||||
def ensure_divisibility(numerator, denominator):
|
||||
"""Ensure that numerator is divisible by the denominator."""
|
||||
"""
|
||||
Ensure the numerator is divisible by the denominator.
|
||||
|
||||
Args:
|
||||
numerator (int): The numerator.
|
||||
denominator (int): The denominator.
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Raises:
|
||||
AssertionError: If the numerator cannot be evenly divided by the denominator, an assertion error is raised.
|
||||
|
||||
"""
|
||||
assert numerator % denominator == 0, "{} is not divisible by {}".format(
|
||||
numerator, denominator)
|
||||
|
||||
|
||||
def divide(numerator, denominator):
|
||||
"""Ensure that numerator is divisible by the denominator and return
|
||||
the division value."""
|
||||
def divide(numerator: int, denominator: int):
|
||||
"""
|
||||
Calculate the division result of two numbers.
|
||||
|
||||
Args:
|
||||
numerator (int): The dividend.
|
||||
denominator (int): The divisor.
|
||||
|
||||
Returns:
|
||||
int: The result of the division, which is the quotient of the dividend divided by the divisor.
|
||||
|
||||
"""
|
||||
ensure_divisibility(numerator, denominator)
|
||||
return numerator // denominator
|
||||
|
||||
def remove_padding(max_len, input_ids, seq_lens_this_time):
|
||||
|
||||
def remove_padding(
|
||||
max_len: paddle.Tensor, input_ids: paddle.Tensor,
|
||||
seq_lens_this_time: paddle.Tensor
|
||||
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor,
|
||||
paddle.Tensor]:
|
||||
"""
|
||||
remove_padding
|
||||
Remove padded sequences from the input.
|
||||
|
||||
Args:
|
||||
max_len (paddle.Tensor): The maximum length of the input sequences.
|
||||
input_ids (paddle.Tensor): The IDs of the input sequences.
|
||||
seq_lens_this_time (paddle.Tensor): The actual length of each sequence.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing:
|
||||
- The sequence IDs with padding removed (paddle.Tensor).
|
||||
- The padding offsets (paddle.Tensor).
|
||||
- The cumulative offsets (paddle.Tensor).
|
||||
- The query sequence lengths (paddle.Tensor).
|
||||
- The key sequence lengths (paddle.Tensor).
|
||||
"""
|
||||
if current_platform.is_cuda():
|
||||
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time)
|
||||
@@ -159,7 +280,7 @@ def remove_padding(max_len, input_ids, seq_lens_this_time):
|
||||
cu_seqlens_q,
|
||||
cu_seqlens_k,
|
||||
) = get_padding_offset(input_ids, cum_offsets_now, token_num,
|
||||
seq_lens_this_time)
|
||||
seq_lens_this_time)
|
||||
return (
|
||||
ids_remove_padding,
|
||||
padding_offset,
|
||||
@@ -168,10 +289,30 @@ def remove_padding(max_len, input_ids, seq_lens_this_time):
|
||||
cu_seqlens_k,
|
||||
)
|
||||
|
||||
def speculate_remove_padding(max_len, input_ids, seq_lens_this_time,
|
||||
draft_tokens, seq_lens_encoder):
|
||||
|
||||
def speculate_remove_padding(
|
||||
max_len: paddle.Tensor, input_ids: paddle.Tensor,
|
||||
seq_lens_this_time: paddle.Tensor, draft_tokens: paddle.Tensor,
|
||||
seq_lens_encoder: paddle.Tensor
|
||||
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor,
|
||||
paddle.Tensor]:
|
||||
"""
|
||||
remove_padding
|
||||
Remove padding from sequences.
|
||||
|
||||
Args:
|
||||
max_len (paddle.Tensor): The maximum length of the sequences.
|
||||
input_ids (paddle.Tensor): The IDs of the input sequences.
|
||||
seq_lens_this_time (paddle.Tensor): The lengths of the sequences in the current batch.
|
||||
draft_tokens (paddle.Tensor): The draft tokens.
|
||||
seq_lens_encoder (paddle.Tensor): The lengths of the encoder sequences.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing:
|
||||
- The input sequence IDs with padding removed (paddle.Tensor).
|
||||
- Padding offsets (paddle.Tensor).
|
||||
- Cumulative offsets (paddle.Tensor).
|
||||
- Query sequence lengths (paddle.Tensor).
|
||||
- Key sequence lengths (paddle.Tensor).
|
||||
"""
|
||||
if current_platform.is_cuda():
|
||||
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time)
|
||||
@@ -197,3 +338,43 @@ def speculate_remove_padding(max_len, input_ids, seq_lens_this_time,
|
||||
cu_seqlens_q,
|
||||
cu_seqlens_k,
|
||||
)
|
||||
|
||||
|
||||
class CpuGuard:
|
||||
"""CpuGuard"""
|
||||
|
||||
def __init__(self):
|
||||
"""init"""
|
||||
pass
|
||||
|
||||
def __enter__(self):
|
||||
"""enter"""
|
||||
self.ori_device = paddle.device.get_device()
|
||||
paddle.device.set_device("cpu")
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
"""exit"""
|
||||
paddle.device.set_device(self.ori_device)
|
||||
|
||||
|
||||
def create_and_set_parameter(layer: nn.Layer, name: str,
|
||||
tensor: paddle.Tensor):
|
||||
"""
|
||||
Create a parameter for a specified layer and set its value to the given tensor.
|
||||
|
||||
Args:
|
||||
layer (nn.Layer): The layer object to which the parameter will be added.
|
||||
name (str): The name of the parameter to be created.
|
||||
tensor (paddle.Tensor): The tensor to set as the value of the parameter.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
setattr(
|
||||
layer, name,
|
||||
layer.create_parameter(
|
||||
shape=tensor.shape,
|
||||
dtype=tensor.dtype,
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
))
|
||||
getattr(layer, name).set_value(tensor)
|
||||
|
Reference in New Issue
Block a user