mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
@@ -13,43 +13,193 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
import threading
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
from fastdeploy.distributed.parallel_state import \
|
||||
get_tensor_model_parallel_world_size
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.guided_decoding.base_guided_decoding import \
|
||||
LogitsProcessorBase
|
||||
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
||||
from fastdeploy.model_executor.layers.sample.ops import \
|
||||
apply_penalty_multi_scores
|
||||
from fastdeploy.model_executor.layers.sample.ops import (
|
||||
apply_penalty_multi_scores, apply_speculative_penalty_multi_scores,
|
||||
top_p_sampling)
|
||||
from fastdeploy.platforms import current_platform
|
||||
|
||||
|
||||
class SamplerProcessor:
|
||||
"""
|
||||
SamplingProcessor for guided decoding.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.async_step = None
|
||||
self.token_bitmask = None
|
||||
self.logits_processor: Dict[int, Optional[Any]] = dict()
|
||||
self.executor = ThreadPoolExecutor()
|
||||
self.logits_lock = threading.Lock()
|
||||
|
||||
def add_logits_processor(self,
|
||||
ids: int,
|
||||
future: Optional[Any] = None,
|
||||
prefill_tokens: List[int] = []):
|
||||
""" add logits processor to SamplerProcessor """
|
||||
with self.logits_lock:
|
||||
if future is None:
|
||||
if ids in self.logits_processor:
|
||||
del self.logits_processor[ids]
|
||||
return
|
||||
|
||||
if isinstance(future, LogitsProcessorBase):
|
||||
self.logits_processor[ids] = future
|
||||
for token in prefill_tokens:
|
||||
self.logits_processor[ids].accept_token(token)
|
||||
elif future.done():
|
||||
self.logits_processor[ids] = future.result()
|
||||
for token in prefill_tokens:
|
||||
self.logits_processor[ids].accept_token(token)
|
||||
else:
|
||||
self.logits_processor[ids] = [future, prefill_tokens]
|
||||
|
||||
def update_vocab_mask(self, skip_idx_list: List[int] = []):
|
||||
""" update vocab mask. (cpu-heavy operation) """
|
||||
if len(self.logits_processor) == 0:
|
||||
return
|
||||
|
||||
with self.logits_lock:
|
||||
for idx, processor in self.logits_processor.items():
|
||||
if processor is None:
|
||||
del self.logits_processor[idx]
|
||||
continue
|
||||
|
||||
if not isinstance(processor, LogitsProcessorBase):
|
||||
future, prefill_tokens = self.logits_processor[idx]
|
||||
self.logits_processor[idx] = future.result()
|
||||
for token in prefill_tokens:
|
||||
self.logits_processor[idx].accept_token(token)
|
||||
|
||||
available_processors = None
|
||||
for processor in self.logits_processor.values():
|
||||
if processor.is_terminated():
|
||||
continue
|
||||
available_processors = processor
|
||||
if available_processors is None:
|
||||
return
|
||||
|
||||
# allocate token bitmask
|
||||
self.token_bitmask = available_processors.allocate_token_bitmask()
|
||||
|
||||
with self.logits_lock:
|
||||
# fill token bitmask
|
||||
for idx, processor in self.logits_processor.items():
|
||||
if processor.is_terminated() or idx in skip_idx_list:
|
||||
continue
|
||||
|
||||
processor.fill_token_bitmask(self.token_bitmask, idx)
|
||||
|
||||
def apply_token_mask(self,
|
||||
logits: paddle.Tensor,
|
||||
skip_idx_list: List[int] = []):
|
||||
""" apply token mask to logits """
|
||||
if len(self.logits_processor) == 0 or self.token_bitmask is None:
|
||||
return logits
|
||||
|
||||
# self.async_step.result()
|
||||
available_processors = None
|
||||
with self.logits_lock:
|
||||
for processor in self.logits_processor.values():
|
||||
if processor.is_terminated():
|
||||
continue
|
||||
available_processors = processor
|
||||
if available_processors is None:
|
||||
return logits
|
||||
|
||||
indices = list(self.logits_processor.keys())
|
||||
mask_idx = [i for i in indices if i not in skip_idx_list]
|
||||
return available_processors.apply_token_mask(logits,
|
||||
self.token_bitmask,
|
||||
indices=mask_idx)
|
||||
|
||||
def _accept_token(self, idx: int, token: int):
|
||||
""" accept token """
|
||||
if idx not in self.logits_processor:
|
||||
raise ValueError(
|
||||
f"Invalid index, idx: {idx}, logit_processors.keys: {self.logits_processor.keys()}"
|
||||
)
|
||||
|
||||
if self.logits_processor[idx].is_terminated():
|
||||
return
|
||||
|
||||
self.logits_processor[idx].accept_token(token)
|
||||
|
||||
def update_output_tokens(self,
|
||||
next_tokens: paddle.Tensor,
|
||||
skip_idx_list: List[int] = []):
|
||||
""" update output tokens """
|
||||
if len(self.logits_processor) == 0:
|
||||
return
|
||||
|
||||
token_ids = next_tokens.numpy().tolist()
|
||||
with self.logits_lock:
|
||||
for idx in self.logits_processor.keys():
|
||||
token = token_ids[idx][0]
|
||||
if token < 0 or self.logits_processor[
|
||||
idx] is None or idx in skip_idx_list:
|
||||
continue
|
||||
|
||||
self._accept_token(idx, token)
|
||||
|
||||
def pre_process(self, skip_idx_list: List[int] = []):
|
||||
""" pre process before running """
|
||||
# create async operation for guided decoding
|
||||
# TODO: support async
|
||||
self.update_vocab_mask(skip_idx_list)
|
||||
# self.async_step = self.executor.submit(self.update_vocab_mask)
|
||||
|
||||
|
||||
class Sampler(nn.Layer):
|
||||
"""
|
||||
Sampler for normal generation.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
super().__init__()
|
||||
if current_platform.is_cuda():
|
||||
self.nranks = get_tensor_model_parallel_world_size()
|
||||
if current_platform.is_cuda() or current_platform.is_xpu():
|
||||
self.forward = self.forward_cuda
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.processor = SamplerProcessor()
|
||||
|
||||
def apply_logits_processor(self,
|
||||
ids: int,
|
||||
future: Optional[Any] = None,
|
||||
prefill_tokens: List[int] = []):
|
||||
""" apply logits processor to sampler """
|
||||
self.processor.add_logits_processor(ids, future, prefill_tokens)
|
||||
|
||||
def pre_process(self, skip_idx_list: List[int] = []):
|
||||
""" pre process before running """
|
||||
self.processor.pre_process(skip_idx_list)
|
||||
|
||||
def forward_cuda(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
skip_idx_list: List[int] = [],
|
||||
) -> paddle.Tensor:
|
||||
"""
|
||||
"""
|
||||
logits = self.processor.apply_token_mask(logits, skip_idx_list)
|
||||
|
||||
logits = apply_penalty_multi_scores(
|
||||
sampling_metadata.prompt_token_ids,
|
||||
sampling_metadata.pre_token_ids,
|
||||
logits,
|
||||
sampling_metadata.repetition_penalties,
|
||||
sampling_metadata.frequency_penalties,
|
||||
@@ -63,10 +213,156 @@ class Sampler(nn.Layer):
|
||||
|
||||
probs = F.softmax(logits)
|
||||
|
||||
_, next_tokens = paddle.tensor.top_p_sampling(probs,
|
||||
sampling_metadata.top_p)
|
||||
|
||||
if self.nranks > 1:
|
||||
paddle.distributed.broadcast(next_tokens, 0)
|
||||
_, next_tokens = top_p_sampling(probs, sampling_metadata.top_p)
|
||||
|
||||
self.processor.update_output_tokens(next_tokens, skip_idx_list)
|
||||
return next_tokens
|
||||
|
||||
|
||||
class SpeculativeSampler(nn.Layer):
|
||||
"""
|
||||
Sampler for speculative generation.
|
||||
"""
|
||||
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
"""
|
||||
"""
|
||||
super().__init__()
|
||||
if current_platform.is_cuda():
|
||||
self.forward = self.forward_cuda
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
self.speculative_verify_window = fd_config.speculative_config.verify_window
|
||||
self.speculative_max_candidate_len = fd_config.speculative_config.max_candidate_len
|
||||
|
||||
def pre_process(self, skip_idx_list: List[int] = []):
|
||||
""" pre process before running """
|
||||
pass
|
||||
|
||||
def apply_logits_processor(self,
|
||||
ids: int,
|
||||
future: Optional[Any] = None,
|
||||
prefill_tokens: List[int] = []):
|
||||
""" apply logits processor to sampler """
|
||||
pass
|
||||
|
||||
def forward_cuda(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
max_model_len: int,
|
||||
share_inputs: List[paddle.Tensor],
|
||||
) -> paddle.Tensor:
|
||||
"""
|
||||
"""
|
||||
|
||||
from fastdeploy.model_executor.ops.gpu import (speculate_verify,
|
||||
top_p_candidates)
|
||||
|
||||
logits = apply_speculative_penalty_multi_scores(
|
||||
sampling_metadata.pre_token_ids,
|
||||
logits,
|
||||
sampling_metadata.repetition_penalties,
|
||||
sampling_metadata.frequency_penalties,
|
||||
sampling_metadata.presence_penalties,
|
||||
sampling_metadata.temperature,
|
||||
sampling_metadata.bad_words_token_ids,
|
||||
sampling_metadata.step_idx,
|
||||
sampling_metadata.min_dec_lens,
|
||||
sampling_metadata.eos_token_ids,
|
||||
share_inputs["seq_lens_this_time"],
|
||||
share_inputs["output_padding_offset"],
|
||||
share_inputs["output_cum_offsets"],
|
||||
max_model_len,
|
||||
)
|
||||
|
||||
probs = F.softmax(logits)
|
||||
|
||||
verify_scores, verify_tokens, actual_candidate_len = top_p_candidates(
|
||||
probs,
|
||||
sampling_metadata.top_p,
|
||||
share_inputs["output_padding_offset"],
|
||||
self.speculative_max_candidate_len,
|
||||
max_model_len,
|
||||
)
|
||||
|
||||
speculate_verify(
|
||||
share_inputs["accept_tokens"],
|
||||
share_inputs["accept_num"],
|
||||
share_inputs["step_idx"],
|
||||
share_inputs["stop_flags"],
|
||||
share_inputs["seq_lens_encoder"],
|
||||
share_inputs["seq_lens_decoder"],
|
||||
share_inputs[
|
||||
"draft_tokens"], # Both input and output, need to write the last 1 token accepted to position 0.
|
||||
share_inputs["seq_lens_this_time"],
|
||||
verify_tokens,
|
||||
verify_scores,
|
||||
share_inputs["max_dec_len"],
|
||||
sampling_metadata.eos_token_ids,
|
||||
share_inputs["is_block_step"],
|
||||
share_inputs["output_cum_offsets"],
|
||||
actual_candidate_len,
|
||||
share_inputs["actual_draft_token_num"],
|
||||
sampling_metadata.top_p,
|
||||
max_model_len,
|
||||
self.speculative_verify_window,
|
||||
True, # enable_topp
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class MTPSampler(nn.Layer):
|
||||
"""
|
||||
"""
|
||||
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
"""
|
||||
"""
|
||||
super().__init__()
|
||||
if current_platform.is_cuda():
|
||||
self.forward = self.forward_cuda
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def pre_process(self, skip_idx_list: List[int] = []):
|
||||
""" pre process before running """
|
||||
pass
|
||||
|
||||
def apply_logits_processor(self,
|
||||
ids: int,
|
||||
future: Optional[Any] = None,
|
||||
prefill_tokens: List[int] = []):
|
||||
""" apply logits processor to sampler """
|
||||
pass
|
||||
|
||||
def forward_cuda(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
max_model_len: int,
|
||||
share_inputs: List[paddle.Tensor],
|
||||
) -> paddle.Tensor:
|
||||
"""
|
||||
"""
|
||||
logits = apply_speculative_penalty_multi_scores(
|
||||
sampling_metadata.pre_token_ids,
|
||||
logits,
|
||||
sampling_metadata.repetition_penalties,
|
||||
sampling_metadata.frequency_penalties,
|
||||
sampling_metadata.presence_penalties,
|
||||
sampling_metadata.temperature,
|
||||
sampling_metadata.bad_words_token_ids,
|
||||
sampling_metadata.step_idx,
|
||||
sampling_metadata.min_dec_lens,
|
||||
sampling_metadata.eos_token_ids,
|
||||
share_inputs["seq_lens_this_time"],
|
||||
share_inputs["seq_lens_encoder"],
|
||||
share_inputs["seq_lens_decoder"],
|
||||
max_model_len,
|
||||
)
|
||||
probs = F.softmax(logits)
|
||||
|
||||
_, next_tokens = top_p_sampling(probs, sampling_metadata.top_p)
|
||||
return next_tokens
|
||||
|
Reference in New Issue
Block a user