Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -23,11 +23,12 @@ import paddle
@dataclass
class SamplingMetadata:
"""
metadata for sampling.
"""
temperature: paddle.Tensor
prompt_token_ids: paddle.Tensor
pre_token_ids: paddle.Tensor
eos_token_ids: paddle.Tensor
frequency_penalties: paddle.Tensor
presence_penalties: paddle.Tensor

View File

@@ -14,8 +14,12 @@
# limitations under the License.
"""
from .apply_penalty_multi_scores import apply_penalty_multi_scores
from .apply_penalty_multi_scores import (
apply_penalty_multi_scores, apply_speculative_penalty_multi_scores)
from .top_p_sampling import top_p_sampling
__all__ = [
"apply_penalty_multi_scores",
"apply_speculative_penalty_multi_scores",
"top_p_sampling",
]

View File

@@ -20,7 +20,7 @@ from fastdeploy.platforms import current_platform
def apply_penalty_multi_scores(
prompt_token_ids: paddle.Tensor,
pre_token_ids: paddle.Tensor,
logits: paddle.Tensor,
repetition_penalties: paddle.Tensor,
frequency_penalties: paddle.Tensor,
@@ -30,16 +30,30 @@ def apply_penalty_multi_scores(
step_idx: paddle.Tensor,
min_dec_lens: paddle.Tensor,
eos_token_ids: paddle.Tensor,
):
) -> paddle.Tensor:
"""
Args:
Returns:
apply_penalty_multi_scores
"""
if current_platform.is_cuda():
from fastdeploy.model_executor.ops.gpu import \
get_token_penalty_multi_scores
logits = get_token_penalty_multi_scores(
prompt_token_ids,
pre_token_ids,
logits,
repetition_penalties,
frequency_penalties,
presence_penalties,
temperature,
bad_words_token_ids,
step_idx,
min_dec_lens,
eos_token_ids,
)
elif current_platform.is_xpu():
from fastdeploy.model_executor.ops.xpu import \
get_token_penalty_multi_scores
logits = get_token_penalty_multi_scores(
pre_token_ids,
logits,
repetition_penalties,
frequency_penalties,
@@ -54,3 +68,48 @@ def apply_penalty_multi_scores(
raise NotImplementedError()
return logits
def apply_speculative_penalty_multi_scores(
pre_token_ids: paddle.Tensor,
logits: paddle.Tensor,
repetition_penalties: paddle.Tensor,
frequency_penalties: paddle.Tensor,
presence_penalties: paddle.Tensor,
temperature: paddle.Tensor,
bad_words_token_ids: paddle.Tensor,
step_idx: paddle.Tensor,
min_dec_lens: paddle.Tensor,
eos_token_ids: paddle.Tensor,
seq_lens_this_time: paddle.Tensor,
output_padding_offset: paddle.Tensor,
output_cum_offsets: paddle.Tensor,
max_len: int,
):
"""
apply_speculative_penalty_multi_scores
"""
if current_platform.is_cuda():
from fastdeploy.model_executor.ops.gpu import \
speculate_get_token_penalty_multi_scores
logits = speculate_get_token_penalty_multi_scores(
pre_token_ids,
logits,
repetition_penalties,
frequency_penalties,
presence_penalties,
temperature,
bad_words_token_ids,
step_idx,
min_dec_lens,
eos_token_ids,
seq_lens_this_time,
output_padding_offset,
output_cum_offsets,
max_len,
)
else:
raise NotImplementedError()
return logits

View File

@@ -0,0 +1,97 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Literal, Optional
import paddle
from fastdeploy import envs
def top_p_sampling(
x: paddle.Tensor,
ps: paddle.Tensor,
threshold: Optional[paddle.Tensor] = None,
topp_seed: Optional[paddle.Tensor] = None,
seed: int = -1,
k: int = 0,
mode: Literal['truncated', 'non-truncated'] = "truncated",
) -> tuple[paddle.Tensor, paddle.Tensor]:
"""
top_p_sampling
"""
top_p_class = envs.FD_SAMPLING_CLASS.lower()
if top_p_class == "air":
_, ids = air_top_p_sampling(x,
ps,
threshold,
topp_seed,
seed=seed,
k=k,
mode=mode)
elif top_p_class == "rejection":
ids = rejection_top_p_sampling(x, ps, seed)
_ = None
else:
_, ids = paddle.tensor.top_p_sampling(x,
ps,
threshold=threshold,
topp_seed=topp_seed,
seed=seed,
k=k,
mode=mode)
return _, ids
def air_top_p_sampling(
x: paddle.Tensor,
ps: paddle.Tensor,
threshold: Optional[paddle.Tensor] = None,
topp_seed: Optional[paddle.Tensor] = None,
seed: int = -1,
k: int = 0,
mode: Literal['truncated', 'non-truncated'] = "truncated",
) -> tuple[paddle.Tensor, paddle.Tensor]:
"""
air_top_p_sampling
"""
try:
from fastdeploy.model_executor.ops.gpu import air_top_p_sampling
out, ids = air_top_p_sampling(x, ps, threshold, topp_seed, seed, k,
mode)
except ImportError:
raise RuntimeError("Cannot import air_top_p_sampling op.")
return out, ids
def rejection_top_p_sampling(
x: paddle.Tensor,
ps: paddle.Tensor,
seed: int = -1,
) -> paddle.Tensor:
"""
rejection_top_p_sampling
"""
try:
from fastdeploy.model_executor.ops.gpu import rejection_top_p_sampling
ids = rejection_top_p_sampling(
x,
ps,
seed,
)
except ImportError:
raise RuntimeError("Cannot import rejection_top_p_sampling op.")
return ids

View File

@@ -13,43 +13,193 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import threading
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Dict, List, Optional
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from fastdeploy.distributed.parallel_state import \
get_tensor_model_parallel_world_size
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.guided_decoding.base_guided_decoding import \
LogitsProcessorBase
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.ops import \
apply_penalty_multi_scores
from fastdeploy.model_executor.layers.sample.ops import (
apply_penalty_multi_scores, apply_speculative_penalty_multi_scores,
top_p_sampling)
from fastdeploy.platforms import current_platform
class SamplerProcessor:
"""
SamplingProcessor for guided decoding.
"""
def __init__(self):
self.async_step = None
self.token_bitmask = None
self.logits_processor: Dict[int, Optional[Any]] = dict()
self.executor = ThreadPoolExecutor()
self.logits_lock = threading.Lock()
def add_logits_processor(self,
ids: int,
future: Optional[Any] = None,
prefill_tokens: List[int] = []):
""" add logits processor to SamplerProcessor """
with self.logits_lock:
if future is None:
if ids in self.logits_processor:
del self.logits_processor[ids]
return
if isinstance(future, LogitsProcessorBase):
self.logits_processor[ids] = future
for token in prefill_tokens:
self.logits_processor[ids].accept_token(token)
elif future.done():
self.logits_processor[ids] = future.result()
for token in prefill_tokens:
self.logits_processor[ids].accept_token(token)
else:
self.logits_processor[ids] = [future, prefill_tokens]
def update_vocab_mask(self, skip_idx_list: List[int] = []):
""" update vocab mask. (cpu-heavy operation) """
if len(self.logits_processor) == 0:
return
with self.logits_lock:
for idx, processor in self.logits_processor.items():
if processor is None:
del self.logits_processor[idx]
continue
if not isinstance(processor, LogitsProcessorBase):
future, prefill_tokens = self.logits_processor[idx]
self.logits_processor[idx] = future.result()
for token in prefill_tokens:
self.logits_processor[idx].accept_token(token)
available_processors = None
for processor in self.logits_processor.values():
if processor.is_terminated():
continue
available_processors = processor
if available_processors is None:
return
# allocate token bitmask
self.token_bitmask = available_processors.allocate_token_bitmask()
with self.logits_lock:
# fill token bitmask
for idx, processor in self.logits_processor.items():
if processor.is_terminated() or idx in skip_idx_list:
continue
processor.fill_token_bitmask(self.token_bitmask, idx)
def apply_token_mask(self,
logits: paddle.Tensor,
skip_idx_list: List[int] = []):
""" apply token mask to logits """
if len(self.logits_processor) == 0 or self.token_bitmask is None:
return logits
# self.async_step.result()
available_processors = None
with self.logits_lock:
for processor in self.logits_processor.values():
if processor.is_terminated():
continue
available_processors = processor
if available_processors is None:
return logits
indices = list(self.logits_processor.keys())
mask_idx = [i for i in indices if i not in skip_idx_list]
return available_processors.apply_token_mask(logits,
self.token_bitmask,
indices=mask_idx)
def _accept_token(self, idx: int, token: int):
""" accept token """
if idx not in self.logits_processor:
raise ValueError(
f"Invalid index, idx: {idx}, logit_processors.keys: {self.logits_processor.keys()}"
)
if self.logits_processor[idx].is_terminated():
return
self.logits_processor[idx].accept_token(token)
def update_output_tokens(self,
next_tokens: paddle.Tensor,
skip_idx_list: List[int] = []):
""" update output tokens """
if len(self.logits_processor) == 0:
return
token_ids = next_tokens.numpy().tolist()
with self.logits_lock:
for idx in self.logits_processor.keys():
token = token_ids[idx][0]
if token < 0 or self.logits_processor[
idx] is None or idx in skip_idx_list:
continue
self._accept_token(idx, token)
def pre_process(self, skip_idx_list: List[int] = []):
""" pre process before running """
# create async operation for guided decoding
# TODO: support async
self.update_vocab_mask(skip_idx_list)
# self.async_step = self.executor.submit(self.update_vocab_mask)
class Sampler(nn.Layer):
"""
Sampler for normal generation.
"""
def __init__(self):
"""
"""
super().__init__()
if current_platform.is_cuda():
self.nranks = get_tensor_model_parallel_world_size()
if current_platform.is_cuda() or current_platform.is_xpu():
self.forward = self.forward_cuda
else:
raise NotImplementedError()
self.processor = SamplerProcessor()
def apply_logits_processor(self,
ids: int,
future: Optional[Any] = None,
prefill_tokens: List[int] = []):
""" apply logits processor to sampler """
self.processor.add_logits_processor(ids, future, prefill_tokens)
def pre_process(self, skip_idx_list: List[int] = []):
""" pre process before running """
self.processor.pre_process(skip_idx_list)
def forward_cuda(
self,
logits: paddle.Tensor,
sampling_metadata: SamplingMetadata,
skip_idx_list: List[int] = [],
) -> paddle.Tensor:
"""
"""
logits = self.processor.apply_token_mask(logits, skip_idx_list)
logits = apply_penalty_multi_scores(
sampling_metadata.prompt_token_ids,
sampling_metadata.pre_token_ids,
logits,
sampling_metadata.repetition_penalties,
sampling_metadata.frequency_penalties,
@@ -63,10 +213,156 @@ class Sampler(nn.Layer):
probs = F.softmax(logits)
_, next_tokens = paddle.tensor.top_p_sampling(probs,
sampling_metadata.top_p)
if self.nranks > 1:
paddle.distributed.broadcast(next_tokens, 0)
_, next_tokens = top_p_sampling(probs, sampling_metadata.top_p)
self.processor.update_output_tokens(next_tokens, skip_idx_list)
return next_tokens
class SpeculativeSampler(nn.Layer):
"""
Sampler for speculative generation.
"""
def __init__(self, fd_config: FDConfig):
"""
"""
super().__init__()
if current_platform.is_cuda():
self.forward = self.forward_cuda
else:
raise NotImplementedError()
self.speculative_verify_window = fd_config.speculative_config.verify_window
self.speculative_max_candidate_len = fd_config.speculative_config.max_candidate_len
def pre_process(self, skip_idx_list: List[int] = []):
""" pre process before running """
pass
def apply_logits_processor(self,
ids: int,
future: Optional[Any] = None,
prefill_tokens: List[int] = []):
""" apply logits processor to sampler """
pass
def forward_cuda(
self,
logits: paddle.Tensor,
sampling_metadata: SamplingMetadata,
max_model_len: int,
share_inputs: List[paddle.Tensor],
) -> paddle.Tensor:
"""
"""
from fastdeploy.model_executor.ops.gpu import (speculate_verify,
top_p_candidates)
logits = apply_speculative_penalty_multi_scores(
sampling_metadata.pre_token_ids,
logits,
sampling_metadata.repetition_penalties,
sampling_metadata.frequency_penalties,
sampling_metadata.presence_penalties,
sampling_metadata.temperature,
sampling_metadata.bad_words_token_ids,
sampling_metadata.step_idx,
sampling_metadata.min_dec_lens,
sampling_metadata.eos_token_ids,
share_inputs["seq_lens_this_time"],
share_inputs["output_padding_offset"],
share_inputs["output_cum_offsets"],
max_model_len,
)
probs = F.softmax(logits)
verify_scores, verify_tokens, actual_candidate_len = top_p_candidates(
probs,
sampling_metadata.top_p,
share_inputs["output_padding_offset"],
self.speculative_max_candidate_len,
max_model_len,
)
speculate_verify(
share_inputs["accept_tokens"],
share_inputs["accept_num"],
share_inputs["step_idx"],
share_inputs["stop_flags"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs[
"draft_tokens"], # Both input and output, need to write the last 1 token accepted to position 0.
share_inputs["seq_lens_this_time"],
verify_tokens,
verify_scores,
share_inputs["max_dec_len"],
sampling_metadata.eos_token_ids,
share_inputs["is_block_step"],
share_inputs["output_cum_offsets"],
actual_candidate_len,
share_inputs["actual_draft_token_num"],
sampling_metadata.top_p,
max_model_len,
self.speculative_verify_window,
True, # enable_topp
)
return None
class MTPSampler(nn.Layer):
"""
"""
def __init__(self, fd_config: FDConfig):
"""
"""
super().__init__()
if current_platform.is_cuda():
self.forward = self.forward_cuda
else:
raise NotImplementedError()
def pre_process(self, skip_idx_list: List[int] = []):
""" pre process before running """
pass
def apply_logits_processor(self,
ids: int,
future: Optional[Any] = None,
prefill_tokens: List[int] = []):
""" apply logits processor to sampler """
pass
def forward_cuda(
self,
logits: paddle.Tensor,
sampling_metadata: SamplingMetadata,
max_model_len: int,
share_inputs: List[paddle.Tensor],
) -> paddle.Tensor:
"""
"""
logits = apply_speculative_penalty_multi_scores(
sampling_metadata.pre_token_ids,
logits,
sampling_metadata.repetition_penalties,
sampling_metadata.frequency_penalties,
sampling_metadata.presence_penalties,
sampling_metadata.temperature,
sampling_metadata.bad_words_token_ids,
sampling_metadata.step_idx,
sampling_metadata.min_dec_lens,
sampling_metadata.eos_token_ids,
share_inputs["seq_lens_this_time"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
max_model_len,
)
probs = F.softmax(logits)
_, next_tokens = top_p_sampling(probs, sampling_metadata.top_p)
return next_tokens