Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -17,10 +17,10 @@ from typing import Optional
import paddle
import fastdeploy
from fastdeploy.platforms.utils import convert_to_npu_dequant_scale
from .quant_base import QuantConfigBase, QuantMethodBase
from fastdeploy.model_executor.layers.quantization.ops import (
cutlass_scaled_mm, scaled_fp8_quant)
from fastdeploy.model_executor.layers.quantization.quant_base import (
QuantConfigBase, QuantMethodBase)
class WFP8AFP8Config(QuantConfigBase):
@@ -32,17 +32,26 @@ class WFP8AFP8Config(QuantConfigBase):
super().__init__()
self.weight_scale_dict = weight_scale_dict
self.act_scale_dict = act_scale_dict
self.quant_max_bound = 448
self.quant_min_bound = -448
self.quant_round_type = 1
def get_name(self) -> str:
def name(self) -> str:
"""
"""
return "wfp8afp8"
@classmethod
def from_config(cls, config: dict) -> "WFP8AFP8Config":
weight_scale_dict = config["weight_scale_dict"]
act_scale_dict = config["act_scale_dict"]
"""
"""
weight_scale_dict = config.get("weight_scale_dict", None)
act_scale_dict = config.get("act_scale_dict", None)
return cls(weight_scale_dict, act_scale_dict)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
"""
"""
return WFP8AFP8LinearMethod(self)
@@ -59,58 +68,49 @@ class WFP8AFP8LinearMethod(QuantMethodBase):
self.quant_config = quant_config
def create_weights(self, layer):
"""
"""
layer.linear_weight_shape.reverse()
layer.weight_dtype = "float8_e4m3fn"
# TODO(YuanRisheng): set weight logic should be moved to process_loaded_weights func
weight_scale = self.quant_config.weight_scale_dict.get(
layer.prefix + ".weight_quanter")
in_scale = self.quant_config.act_scale_dict.get(layer.prefix +
".activation_quanter")
self.skip_quant = False
# we will skip quant if weight_scale is not found or in_scale is not found
if weight_scale is None or in_scale is None:
self.skip_quant = True
else:
max_range = 448.0
layer.scalar_scale_name = layer.prefix + ".scalar_weight_quanter"
layer.scalar_scale = layer.create_parameter(
shape=([1]),
dtype="float32",
)
layer.scalar_scale.set_value(
paddle.to_tensor([1.0 / (max_range * in_scale)],
dtype="float32"))
linear_out_scale = paddle.to_tensor(weight_scale /
max_range).astype("float32")
layer.linear_out_scale = layer.create_parameter(
shape=[layer.embed_dim],
dtype="float32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.linear_out_scale.set_value(
convert_to_npu_dequant_scale(linear_out_scale))
layer.linear_weight_scale = layer.create_parameter(
shape=[1],
dtype="float32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
def process_loaded_weights(self, layer, weights) -> None:
# TODO(YuanRisheng): We should abstract the skip_quant logic to adapt to more quant methods
"""
"""
if self.skip_quant:
weight_tensor = weights.cast(layer._dtype)
layer.linear_weight.set_value(weight_tensor)
return
weight_tensor = weights.transpose([1, 0])
weight_tensor = paddle.cast(weight_tensor, self.weight_dtype)
self.linear_weight.copy_(weight_tensor, False)
if weights.dtype != paddle.float8_e4m3fn:
self.use_per_token_if_dynamic = True
weight_tensor = weights.transpose([1, 0]).contiguous()
qweight, weight_scale = scaled_fp8_quant(
weight_tensor,
use_per_token_if_dynamic=False,
)
layer.linear_weight.copy_(qweight, False)
layer.linear_weight_scale.set_value(weight_scale)
def apply(self, layer, x):
"""
"""
if self.skip_quant:
linear_out = paddle.matmul(x, layer.linear_weight, False, True)
return linear_out
linear_out = fastdeploy.model_executor.ops.gpu.per_channel_fp8_fp8_half_gemm_fused(
x,
layer.linear_weight,
bias=layer.linear_bias if layer.add_bias else None,
scalar_scale=layer.scalar_scale,
channel_scale=layer.linear_out_scale,
transpose_x=False,
transpose_y=True,
output_dtype=layer._dtype,
)
if self.use_per_token_if_dynamic:
out_type = x.dtype
a_q, a_scales = scaled_fp8_quant(
x, use_per_token_if_dynamic=self.use_per_token_if_dynamic)
linear_out = cutlass_scaled_mm(a_q, layer.linear_weight, a_scales,
layer.linear_weight_scale, out_type,
layer.linear_bias)
else:
raise NotImplementedError
return linear_out