Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -16,11 +16,12 @@
from typing import Optional
import paddle
from paddlenlp.utils.log import logger
from paddleformers.utils.log import logger
import fastdeploy
from fastdeploy.platforms.utils import convert_to_npu_dequant_scale
from ..utils import get_tensor
from .quant_base import QuantConfigBase, QuantMethodBase
@@ -29,14 +30,18 @@ class W8A8Config(QuantConfigBase):
quantization config for weight 8bits and activation 8bits
"""
def __init__(self, weight_scale_dict, act_scale_dict,
use_gemm_dequant) -> None:
def __init__(self, weight_scale_dict, act_scale_dict, use_gemm_dequant,
use_smooth_quant) -> None:
super().__init__()
self.weight_scale_dict = weight_scale_dict
self.act_scale_dict = act_scale_dict
self.use_gemm_dequant = use_gemm_dequant
self.use_smooth_quant = use_smooth_quant
self.quant_max_bound = 127
self.quant_min_bound = -127
self.quant_round_type = 0
def get_name(self) -> str:
def name(self) -> str:
return "w8a8"
@classmethod
@@ -61,12 +66,17 @@ class W8A8LinearMethod(QuantMethodBase):
) -> None:
super().__init__()
self.quant_config = quant_config
self.smooth_quant_method = SmoothQuantLinearMethod(quant_config)
def create_weights(self, layer):
weight_scale = self.quant_config.weight_scale_dict.get(
layer.prefix + ".weight_quanter")
layer.linear_weight_shape.reverse()
layer.weight_dtype = "int8"
if self.quant_config.use_smooth_quant:
self.smooth_quant_method.create_weights(layer)
weight_scale = self.quant_config.weight_scale_dict.get(layer.prefix +
".weight_scale")
in_scale = self.quant_config.act_scale_dict.get(layer.prefix +
".activation_quanter")
".activation_scale")
self.skip_quant = False
if weight_scale is None or in_scale is None:
self.skip_quant = True
@@ -86,13 +96,15 @@ class W8A8LinearMethod(QuantMethodBase):
convert_to_npu_dequant_scale(linear_out_scale))
def process_loaded_weights(self, layer, weights) -> None:
if self.quant_config.use_smooth_quant:
self.smooth_quant_method.process_loaded_weights(layer, weights)
if self.skip_quant:
logger.debug(f"{layer.prefix} skip quant")
weight_tensor = weights.cast(layer._dtype)
layer.linear_weight.set_value(weight_tensor)
else:
weight_tensor = weights.transpose([1, 0])
weight_tensor = paddle.cast(weight_tensor, layer.weight_dtype)
weight_tensor = paddle.cast(weight_tensor, "int8")
layer.linear_weight.set_value(weight_tensor)
def apply(self, layer, x):
@@ -107,3 +119,53 @@ class W8A8LinearMethod(QuantMethodBase):
linear_out = fastdeploy.model_executor.ops.gpu.dequant_int8(
linear_out, layer.linear_out_scale, layer._dtype)
return linear_out
class SmoothQuantLinearMethod(QuantMethodBase):
"""
SmoothQuant Method
"""
def __init__(
self,
quant_config: QuantConfigBase,
) -> None:
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer):
linear_shift_shape = [layer.output_size]
linear_smooth_shape = [layer.output_size]
layer.linear_shift = self.create_parameter(
shape=linear_shift_shape,
dtype=layer._dtype,
is_bias=False,
)
layer.linear_smooth = layer.create_parameter(
shape=linear_smooth_shape,
dtype=layer._dtype,
is_bias=False,
)
def process_loaded_weights(self, layer, weights) -> None:
if layer.shift_key in layer.state_dict:
shift_tensor = get_tensor(layer.state_dict.pop(
layer.shift_key)).astype(paddle.get_default_dtype())
else:
shift_tensor = paddle.zeros(
shape=layer.linear_shift_shape,
dtype=paddle.get_default_dtype(),
)
layer.linear_shift.set_value(shift_tensor)
if layer.smooth_key in layer.state_dict:
smooth_tensor = get_tensor(layer.state_dict.pop(
layer.smooth_key)).astype(paddle.get_default_dtype())
else:
smooth_tensor = paddle.ones(
shape=[layer.linear_smooth_shape],
dtype=paddle.get_default_dtype(),
)
layer.linear_smooth.set_value(smooth_tensor)
def apply(self, layer, x):
pass