Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -0,0 +1,22 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from .cutlass_scaled_mm import cutlass_scaled_mm
from .scaled_fp8_quant import scaled_fp8_quant
__all__ = [
"cutlass_scaled_mm",
"scaled_fp8_quant",
]

View File

@@ -0,0 +1,126 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
import paddle
import fastdeploy
def cutlass_scaled_mm(a: paddle.Tensor,
b: paddle.Tensor,
scale_a: paddle.Tensor,
scale_b: paddle.Tensor,
out_dtype: paddle.dtype,
bias: Optional[paddle.Tensor] = None) -> paddle.Tensor:
"""
`cutlass_scaled_mm` implements a fused version of
`output = paddle.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
where scale_a * a and scale_b * b are implemented using numpy-style
broadcasting.
In order to support blockwise scaling like found in DeepSeek V3 we also
support extended "group" broadcast rules. We extend the numpy-style
broadcasting rules with the following rule:
"if the extent of a dimension in the source shape is between 1 and
corresponding extent in the target shape we repeat each element along
that dimension src_shape[dim] // target_shape[dim] times consecutively"
example if we have:
a = [[1, 2], and target_shape = (2, 4)
[3, 4]]
then we would expand a to:
a = [[1, 1, 2, 2],
[3, 3, 4, 4]]
currently we only support the case:
scale_a.shape * [1, 128] == a.shape
scale_b.shape * [128, 128] == b.shape
"""
assert (out_dtype == paddle.bfloat16 or out_dtype == paddle.float16)
assert bias is None or bias.shape[0] == b.shape[
0] and bias.dtype == out_dtype
# Ensure input tensors have valid shapes
# assert a.numel() > 0, "Input tensor 'a' must not be empty"
# assert b.numel() > 0, "Input tensor 'b' must not be empty"
# assert scale_a.numel() > 0, "Scale tensor 'scale_a' must not be empty"
# assert scale_b.numel() > 0, "Scale tensor 'scale_b' must not be empty"
m = a.shape[0]
n = b.shape[0]
cutlass_compatible_b = (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
assert cutlass_compatible_b
out = paddle.empty([m, n], dtype=out_dtype)
fastdeploy.model_executor.ops.gpu.cutlass_scaled_mm(
out, a, b, scale_a, scale_b, bias)
return out
def scaled_fp8_quant(
input: paddle.Tensor,
scale: Optional[paddle.Tensor] = None,
num_token_padding: Optional[int] = None,
scale_ub: float = 0,
use_per_token_if_dynamic: bool = False,
) -> tuple[paddle.Tensor, paddle.Tensor]:
"""
Quantize input tensor to FP8 and return quantized tensor and scale.
This function supports both static and dynamic quantization: If you
provide the scale, it will use static scaling and if you omit it,
the scale will be determined dynamically. The function also allows
optional padding of the output tensors for downstream kernels that
will benefit from padding.
Args:
input: The input tensor to be quantized to FP8
scale: Optional scaling factor for the FP8 quantization
scale_ub: Optional upper bound for scaling factor in dynamic
per token case
num_token_padding: If specified, pad the first dimension
of the output to at least this value.
use_per_token_if_dynamic: Whether to do per_tensor or per_token
in the dynamic quantization case.
Returns:
tuple[paddle.Tensor, paddle.Tensor]: The output tensor in FP8 and
scaling factor.
"""
# This code assumes batch_dim and num_tokens are flattened
assert (input.ndim == 2)
shape = input.shape
if num_token_padding:
shape = (max(num_token_padding, input.shape[0]), shape[1])
output = paddle.empty(shape, dtype=paddle.float8_e4m3fn)
if scale is None:
if use_per_token_if_dynamic:
scale = paddle.empty([shape[0], 1], dtype=paddle.float32)
from fastdeploy.model_executor.ops.gpu import \
dynamic_per_token_scaled_fp8_quant
dynamic_per_token_scaled_fp8_quant(output, input, scale, scale_ub)
else:
scale = paddle.zeros([1], dtype=paddle.float32)
from fastdeploy.model_executor.ops.gpu import \
dynamic_scaled_fp8_quant
dynamic_scaled_fp8_quant(output, input, scale)
else:
# num_token_padding not implemented for this case
# assert (scale.numel() == 1 or num_token_padding is None)
from fastdeploy.model_executor.ops.gpu import static_scaled_fp8_quant
static_scaled_fp8_quant(output, input, scale)
return output, scale

View File

@@ -0,0 +1,75 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
import paddle
def scaled_fp8_quant(
input: paddle.Tensor,
scale: Optional[paddle.Tensor] = None,
num_token_padding: Optional[int] = None,
scale_ub: float = 0,
use_per_token_if_dynamic: bool = False,
) -> tuple[paddle.Tensor, paddle.Tensor]:
"""
Quantize input tensor to FP8 and return quantized tensor and scale.
This function supports both static and dynamic quantization: If you
provide the scale, it will use static scaling and if you omit it,
the scale will be determined dynamically. The function also allows
optional padding of the output tensors for downstream kernels that
will benefit from padding.
Args:
input: The input tensor to be quantized to FP8
scale: Optional scaling factor for the FP8 quantization
scale_ub: Optional upper bound for scaling factor in dynamic
per token case
num_token_padding: If specified, pad the first dimension
of the output to at least this value.
use_per_token_if_dynamic: Whether to do per_tensor or per_token
in the dynamic quantization case.
Returns:
tuple[paddle.Tensor, paddle.Tensor]: The output tensor in FP8 and
scaling factor.
"""
# This code assumes batch_dim and num_tokens are flattened
assert (input.ndim == 2)
shape = input.shape
if num_token_padding:
shape = (max(num_token_padding, input.shape[0]), shape[1])
output = paddle.empty(shape, dtype=paddle.float8_e4m3fn)
if scale is None:
if use_per_token_if_dynamic:
scale = paddle.empty([shape[0], 1], dtype=paddle.float32)
from fastdeploy.model_executor.ops.gpu import \
dynamic_per_token_scaled_fp8_quant
dynamic_per_token_scaled_fp8_quant(output, input, scale, scale_ub)
else:
scale = paddle.zeros([1], dtype=paddle.float32)
from fastdeploy.model_executor.ops.gpu import \
dynamic_scaled_fp8_quant
dynamic_scaled_fp8_quant(output, input, scale)
else:
# num_token_padding not implemented for this case
# assert (scale.numel() == 1 or num_token_padding is None)
from fastdeploy.model_executor.ops.gpu import static_scaled_fp8_quant
static_scaled_fp8_quant(output, input, scale)
return output, scale