mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
@@ -13,38 +13,66 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
from paddle import nn
|
||||
import os
|
||||
import paddle
|
||||
from .quant_base import QuantConfigBase, QuantMethodBase
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy.model_executor.layers.utils import get_tensor
|
||||
|
||||
from ..utils import create_and_set_parameter
|
||||
from .quant_base import QuantConfigBase, QuantMethodBase
|
||||
|
||||
|
||||
class KvCacheQuantzationTypes(str, Enum):
|
||||
"""
|
||||
KvCacheQuantzationTypes
|
||||
"""
|
||||
INT8 = "int8"
|
||||
FP8 = "float8_e4m3fn"
|
||||
INT8_ZP = "int8_zp"
|
||||
FP8_ZP = "float8_e4m3fn_zp"
|
||||
|
||||
|
||||
class KvCacheQuantConfig(QuantConfigBase):
|
||||
"""
|
||||
quantization config for weight 4bits and activation fp8
|
||||
"""
|
||||
|
||||
def __init__(self, cachekv_scale_dict) -> None:
|
||||
def __init__(self, kv_cache_quant_type: str) -> None:
|
||||
"""
|
||||
__init__
|
||||
"""
|
||||
super().__init__()
|
||||
self.cachekv_scale_dict = cachekv_scale_dict
|
||||
self.kv_cache_quant_type = kv_cache_quant_type
|
||||
|
||||
def get_name(self) -> str:
|
||||
try:
|
||||
self.quant_type = KvCacheQuantzationTypes(kv_cache_quant_type)
|
||||
except ValueError:
|
||||
raise ValueError(f'Invalid Kvcache type: {kv_cache_quant_type}')
|
||||
|
||||
self.has_zero_point = "zp" in kv_cache_quant_type
|
||||
|
||||
if self.quant_type == KvCacheQuantzationTypes.INT8 or self.quant_type == KvCacheQuantzationTypes.INT8_ZP:
|
||||
self.max_bound = 127.0
|
||||
elif self.quant_type == KvCacheQuantzationTypes.FP8 or self.quant_type == KvCacheQuantzationTypes.FP8_ZP:
|
||||
self.max_bound = 448.0
|
||||
else:
|
||||
raise ValueError(f'Invalid Kvcache type: {kv_cache_quant_type}')
|
||||
|
||||
def name(self) -> str:
|
||||
"""
|
||||
get_name
|
||||
"""
|
||||
return "kvcache"
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: dict) -> "KvCacheQuantConfig":
|
||||
def from_config(cls, kv_cache_quant_type: str) -> "KvCacheQuantConfig":
|
||||
"""
|
||||
from_config
|
||||
"""
|
||||
cachekv_scale_dict = config["cachekv_scale_dict"]
|
||||
return cls(cachekv_scale_dict)
|
||||
return cls(kv_cache_quant_type)
|
||||
|
||||
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
||||
"""
|
||||
@@ -66,197 +94,63 @@ class KVCacheMethodBase(QuantMethodBase):
|
||||
KVCacheMethodBase __init__
|
||||
"""
|
||||
super().__init__()
|
||||
self.quant_config = quant_config
|
||||
self.cache_quant_config = quant_config
|
||||
|
||||
def load_zp(self, layer: nn.Layer):
|
||||
def load_zp(self, layer: nn.Layer, state_dict):
|
||||
"""
|
||||
load_zp
|
||||
"""
|
||||
if self.cache_k_zp_name in self.quant_config.cachekv_scale_dict:
|
||||
cache_k_zp = paddle.cast(
|
||||
paddle.to_tensor(
|
||||
self.quant_config.cachekv_scale_dict[self.cache_k_zp_name]
|
||||
),
|
||||
self.cache_scale_dtype,
|
||||
)
|
||||
else:
|
||||
cache_k_zp = paddle.zeros(
|
||||
(
|
||||
[self.kv_num_heads * self.head_dim]
|
||||
if self.quant_config.is_channel_wise
|
||||
else [self.kv_num_heads]
|
||||
),
|
||||
dtype=self.cache_scale_dtype,
|
||||
)
|
||||
if self.cache_v_zp_name in self.quant_config.cachekv_scale_dict:
|
||||
cache_v_zp = paddle.cast(
|
||||
paddle.to_tensor(
|
||||
self.quant_config.cachekv_scale_dict[self.cache_v_zp_name]
|
||||
),
|
||||
self.cache_scale_dtype,
|
||||
)
|
||||
else:
|
||||
cache_v_zp = paddle.zeros(
|
||||
(
|
||||
[self.kv_num_heads * self.head_dim]
|
||||
if self.quant_config.is_channel_wise
|
||||
else [self.kv_num_heads]
|
||||
),
|
||||
dtype=self.cache_scale_dtype,
|
||||
)
|
||||
layer.cache_k_zp.set_value(cache_k_zp)
|
||||
layer.cache_v_zp.set_value(cache_v_zp)
|
||||
cache_k_zeropoint = get_tensor(state_dict.pop(self.cache_k_zp_name))
|
||||
cache_v_zeropoint = get_tensor(state_dict.pop(self.cache_v_zp_name))
|
||||
|
||||
def load_scale(self, layer: nn.Layer):
|
||||
create_and_set_parameter(layer, "cache_k_zp", cache_k_zeropoint)
|
||||
create_and_set_parameter(layer, "cache_v_zp", cache_v_zeropoint)
|
||||
|
||||
def load_scale(self, layer: nn.Layer, state_dict):
|
||||
"""
|
||||
load_scale
|
||||
"""
|
||||
if self.cache_k_scale_name in self.quant_config.cachekv_scale_dict:
|
||||
cache_k_scale = paddle.cast(
|
||||
paddle.to_tensor(
|
||||
self.quant_config.cachekv_scale_dict[self.cache_k_scale_name]
|
||||
),
|
||||
self.cache_scale_dtype,
|
||||
)
|
||||
cache_k_out_scale = 1.0 / cache_k_scale
|
||||
else:
|
||||
raise KeyError(
|
||||
f"{self.cache_k_scale_name} not found in scale dict")
|
||||
cache_k_scale_tensor = get_tensor(
|
||||
state_dict.pop(self.cache_k_scale_name)).cast(
|
||||
paddle.get_default_dtype()).reshape_([-1])
|
||||
cache_v_scale_tensor = get_tensor(
|
||||
state_dict.pop(self.cache_v_scale_name)).cast(
|
||||
paddle.get_default_dtype()).reshape_([-1])
|
||||
|
||||
if self.cache_v_scale_name in self.quant_config.cachekv_scale_dict:
|
||||
cache_v_scale = paddle.cast(
|
||||
paddle.to_tensor(
|
||||
self.quant_config.cachekv_scale_dict[self.cache_v_scale_name]
|
||||
),
|
||||
self.cache_scale_dtype,
|
||||
)
|
||||
cache_v_out_scale = 1.0 / cache_v_scale
|
||||
else:
|
||||
raise KeyError(
|
||||
f"{self.cache_v_scale_name} not found in scale dict")
|
||||
cache_k_scale = self.cache_quant_config.max_bound / cache_k_scale_tensor
|
||||
cache_v_scale = self.cache_quant_config.max_bound / cache_v_scale_tensor
|
||||
cache_k_out_scale = cache_k_scale_tensor / self.cache_quant_config.max_bound
|
||||
cache_v_out_scale = cache_v_scale_tensor / self.cache_quant_config.max_bound
|
||||
|
||||
if self.cache_v_scale_name in self.quant_config.cachekv_scale_dict:
|
||||
cache_v_scale = paddle.cast(
|
||||
paddle.to_tensor(
|
||||
self.quant_config.cachekv_scale_dict[self.cache_v_scale_name]
|
||||
),
|
||||
self.cache_scale_dtype,
|
||||
)
|
||||
cache_v_out_scale = 1.0 / cache_v_scale
|
||||
else:
|
||||
raise KeyError(
|
||||
f"{self.cache_v_scale_name} not found in scale dict")
|
||||
create_and_set_parameter(layer, "cache_k_scale", cache_k_scale)
|
||||
create_and_set_parameter(layer, "cache_v_scale", cache_v_scale)
|
||||
create_and_set_parameter(layer, "cache_k_out_scale", cache_k_out_scale)
|
||||
create_and_set_parameter(layer, "cache_v_out_scale", cache_v_out_scale)
|
||||
|
||||
layer.cache_k_scale.set_value(cache_k_scale)
|
||||
layer.cache_v_scale.set_value(cache_v_scale)
|
||||
layer.cache_k_out_scale.set_value(cache_k_out_scale)
|
||||
layer.cache_v_out_scale.set_value(cache_v_out_scale)
|
||||
|
||||
def create_scale(self, layer: nn.Layer):
|
||||
"""
|
||||
create_scale
|
||||
"""
|
||||
layer.cache_k_scale = layer.create_parameter(
|
||||
shape=(
|
||||
[layer.kv_num_heads * layer.head_dim]
|
||||
if self.quant_config.is_channel_wise
|
||||
else [layer.kv_num_heads]
|
||||
),
|
||||
dtype=self.cache_scale_dtype,
|
||||
is_bias=False,
|
||||
)
|
||||
layer.cache_v_scale = layer.create_parameter(
|
||||
shape=(
|
||||
[layer.kv_num_heads * layer.head_dim]
|
||||
if self.quant_config.is_channel_wise
|
||||
else [layer.kv_num_heads]
|
||||
),
|
||||
dtype=self.cache_scale_dtype,
|
||||
is_bias=False,
|
||||
)
|
||||
layer.cache_k_out_scale = layer.create_parameter(
|
||||
shape=(
|
||||
[layer.kv_num_heads * layer.head_dim]
|
||||
if self.quant_config.is_channel_wise
|
||||
else [layer.kv_num_heads]
|
||||
),
|
||||
attr=None,
|
||||
dtype=self.cache_scale_dtype,
|
||||
is_bias=False,
|
||||
)
|
||||
layer.cache_v_out_scale = layer.create_parameter(
|
||||
shape=(
|
||||
[layer.kv_num_heads * layer.head_dim]
|
||||
if self.quant_config.is_channel_wise
|
||||
else [layer.kv_num_heads]
|
||||
),
|
||||
attr=None,
|
||||
dtype=self.cache_scale_dtype,
|
||||
is_bias=False,
|
||||
)
|
||||
|
||||
def create_zp(self, layer: nn.Layer):
|
||||
"""
|
||||
create_zp
|
||||
"""
|
||||
layer.cache_k_zp = layer.create_parameter(
|
||||
shape=(
|
||||
[layer.kv_num_heads * layer.head_dim]
|
||||
if self.quant_config.is_channel_wise
|
||||
else [layer.kv_num_heads]
|
||||
),
|
||||
dtype=self.cache_scale_dtype,
|
||||
is_bias=False,
|
||||
)
|
||||
layer.cache_v_zp = layer.create_parameter(
|
||||
shape=(
|
||||
[layer.kv_num_heads * layer.head_dim]
|
||||
if self.quant_config.is_channel_wise
|
||||
else [layer.kv_num_heads]
|
||||
),
|
||||
dtype=self.cache_scale_dtype,
|
||||
is_bias=False,
|
||||
)
|
||||
|
||||
def create_weights(self, layer: nn.Layer):
|
||||
def create_weights(self, layer: nn.Layer, state_dict):
|
||||
"""
|
||||
create_weights
|
||||
"""
|
||||
self.prefix = layer.prefix
|
||||
self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_quanter"
|
||||
self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_quanter"
|
||||
self.cache_k_zp_name = layer.cache_k_scale_name + ".zero_point"
|
||||
self.cache_v_zp_name = layer.cache_v_scale_name + ".zero_point"
|
||||
self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_scale"
|
||||
self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_scale"
|
||||
self.cache_k_zp_name = layer.prefix + ".cachek_matmul.activation_zero_point"
|
||||
self.cache_v_zp_name = layer.prefix + ".cachev_matmul.activation_zero_point"
|
||||
|
||||
layer.cache_k_zp = None
|
||||
layer.cache_v_zp = None
|
||||
layer.cache_k_scale = None
|
||||
layer.cache_v_scale = None
|
||||
layer.cache_k_out_scale = None
|
||||
layer.cache_v_out_scale = None
|
||||
if self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT8:
|
||||
setattr(layer, "cache_quant_type_str", "cache_int8")
|
||||
setattr(layer, "quant_max_bound", 127.0)
|
||||
setattr(layer, "quant_min_bound", -127.0)
|
||||
elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.FP8:
|
||||
setattr(layer, "cache_quant_type_str", "cache_fp8")
|
||||
setattr(layer, "quant_max_bound", 448.0)
|
||||
setattr(layer, "quant_min_bound", -448.0)
|
||||
else:
|
||||
raise NotImplementedError(f"{self.cache_quant_config.quant_type} is not implemented")
|
||||
|
||||
self._dtype = layer._dtype
|
||||
if self._dtype != "bfloat16" and self._dtype != "float16" and self._dtype == "float32":
|
||||
raise ValueError(
|
||||
f"Just support float32, float16 and \
|
||||
bfloat16 as default dtype, but received {self._dtype}"
|
||||
)
|
||||
self.cache_scale_dtype = (
|
||||
self._dtype if self.quant_config.use_append_attn else "float32"
|
||||
)
|
||||
|
||||
if not self.quant_config.use_dynamic_cachekv_quant:
|
||||
if (
|
||||
self.quant_config.cachekv_dtype == "int8"
|
||||
or self.quant_config.cachekv_dtype == "int4"
|
||||
or self.quant_config.cachekv_dtype == "float8_e4m3fn"
|
||||
):
|
||||
self.create_scale(layer)
|
||||
self.load_scale(layer)
|
||||
if self.quant_config.has_zero_point:
|
||||
self.create_zp(layer)
|
||||
self.load_zp(layer)
|
||||
layer.cache_quant_type_str = self.quant_config.cache_quant_type
|
||||
self.load_scale(layer, state_dict)
|
||||
if self.cache_quant_config.has_zero_point:
|
||||
self.load_zp(layer, state_dict)
|
||||
|
||||
def apply(self, layer):
|
||||
"""
|
||||
@@ -264,4 +158,3 @@ class KVCacheMethodBase(QuantMethodBase):
|
||||
"""
|
||||
raise RuntimeError(
|
||||
f"{self.__class__.__name__}.apply should not be called.")
|
||||
|
||||
|
Reference in New Issue
Block a user